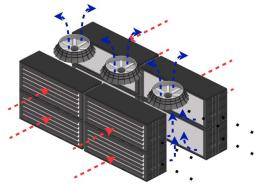


Bench-Scale Development of Promoted High-Capacity Structured Sorbents DE-FE0032254

Presented by James Zhou Andrew Tong Raghubir Gupta

2024 Carbon Management Research Project Review Meeting


Project Overview

Title	Bench-Scale Development of Promoted High-Capacity Structured Sorbents
Funding Solicitation	DE-FOA-0002614 AOI2A
Award No.	DE-FE0032254
Period of Performance	7/01/2023 - 06/30/2025
Project Funding	DOE: \$1.5M Cost-Share: \$0.375M
Overall Project Goal	Development of a high-capacity structured sorbent (HCSS) to reduce CapEx and OpEx of a DAC system
Project Participants	Susteon Inc. and TotalEnergies
DOE/NETL Project Manager	Mr. Zachary Roberts

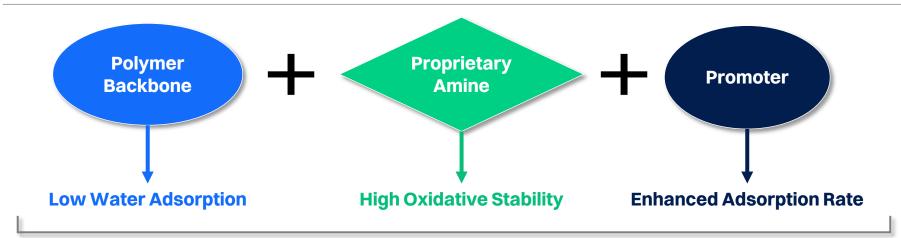
DAC Technology: Challenges and Opportunity

FE0032118: Initial Design and TEA

Component	COC (\$/tCO ₂)	% Cost Contribution (Excl T&S)								
Capital	\$172	49%								
Fixed	\$63	18%								
Variable	\$100	29%								
CO ₂ T&S	\$14	4%								
Total (Excluding T&S)	\$:	335								
Total (Including T&S)	\$349									

- Low sorbent sorbent working capacity: low CO₂ purity, high desorption energy
- High structured sorbent manufacturing cost: high replacement cost, and initial loading cost
- Low adsorption/desorption rate: low volumetric productivity
- Water co-adsorption: high energy demand for CO₂ desorption
- High thermal mass: high sensible heat loss, high CO₂ desorption energy

Objective:

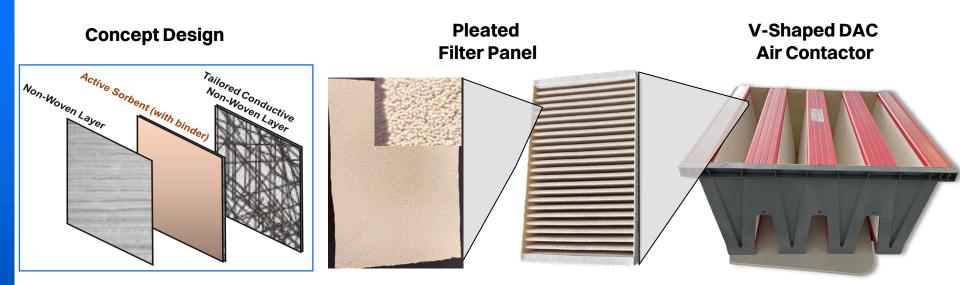

Develop an advanced, high-capacity sorbent with scalable, low-cost structured substrate and demonstrate the sustained performance in a bench-scale system at a scale of about 1-kg/day of CO_2 .

Approach

- 1. Develop next generation sorbent(s) with high adsorption/desorption rates, low water co-adsorption, and good thermal and oxidative stability
- 2. Develop a scalable structured substrate with high sorbent loading and low cost of manufacturing
- 3. Demonstrate the assembled structured sorbent in bench-scale test system

Sorbent Concept

Macroporous polymer backbone for reduced water adsorption


- Sorbent resistant to deactivation in air
- Promoters assist in enhancing the adsorption rate
- □ Non-volatile for reduced vapor emissions and amine loss

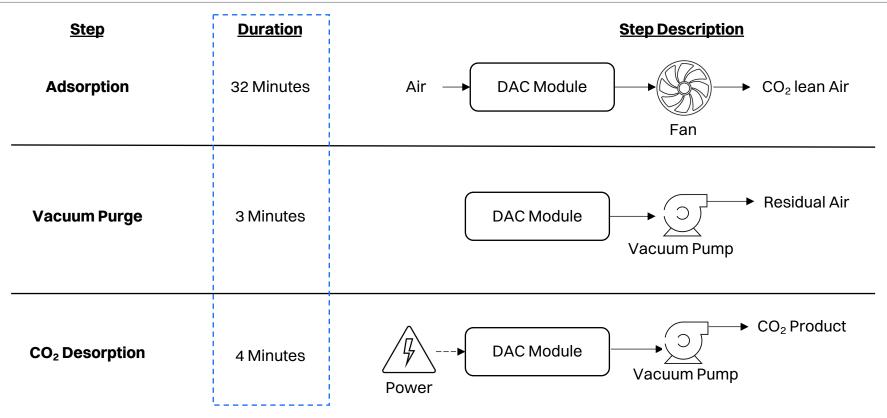
□ Can be **locally heated** by Joule heating to 60 to 80°C

Can be easily incorporated onto a standard air filter

Structured Substrate Design

Electrically conductive structured sorbent filter assembly Nonwoven filter with sorbent (ECCOsorb 1). Up to 1.2 kg sorbent/m² loading 24"x24"x12" Size module capable of holding up to **10 m²** of sorbent surface area

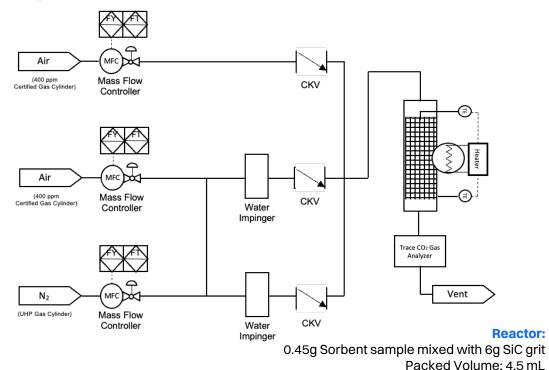
Nonwoven layered filter assembly capable of high sorbent loading and continuous, automated production



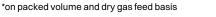
Sorbent Development: Performance Targets

Parameter	Impact	Target
1. CO ₂ Adsorption Rate	Productivity	> 0.035 mmol CO ₂ g sorbent minute
2. CO ₂ Desorption Rate	Productivity	> 0.3 $\frac{\text{mmol CO}_2}{\text{g sorbent} \cdot \text{minute}}$
3. CO ₂ Working Capacity	CO ₂ Product Purity, Desorption Energy	> 1.14 mmol CO ₂ /g sorbent (5 wt% CO ₂)
4. Sorbent Stability	Sorbent Lifetime	> 10,000 cycles
5. Water Co-Adsorption	Desorption Energy Requirement	< 1:1 $H_2O:CO_2$ mass ratio

Process Sequence



Target durations defined by KPPs



Sorbent Development: Lab Screening Reactor

Simplified PFD

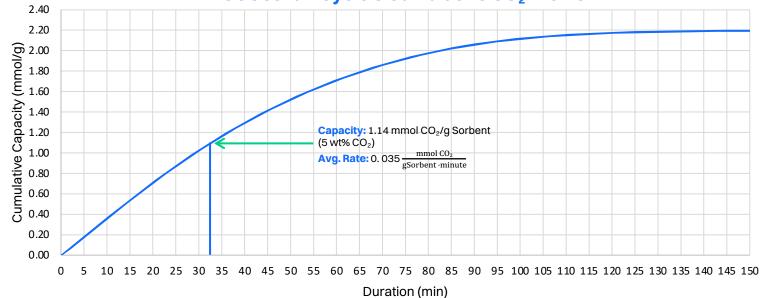
Air Flow Rate: 900 sccm GHSV*: 12,000 hr⁻¹

Sorbent Development: Lab Screening Reactor

Sorbent Compositions Tested

Sorbent	Adsorption Capacity (mmol CO ₂ /g)	Regeneration Capacity (mmol CO ₂ /g)
ECCOsorb-1	2.20	2.32
ECCOsorb-5	1.41	1.34
ECCOsorb-E1	1.41	1.36
ECCOsorb-E15	0.95	0.89
ECCOsorb-E2	1.05	1.09
ECCOsorb-T1	1.89	1.95

ECCOsorb-1 and ECCOsorb-T1 show comparable working capacities and adsorption/desorption rates



Sorbent Development: CO₂ Adsorption Rate

ECCOsorb 1

Sorbent Form Factor: Granules in Packed Bed **Sorbent Mass:** 0.45 g **Adsorption**: 900 sccm humid air **Regeneration:** 70°C

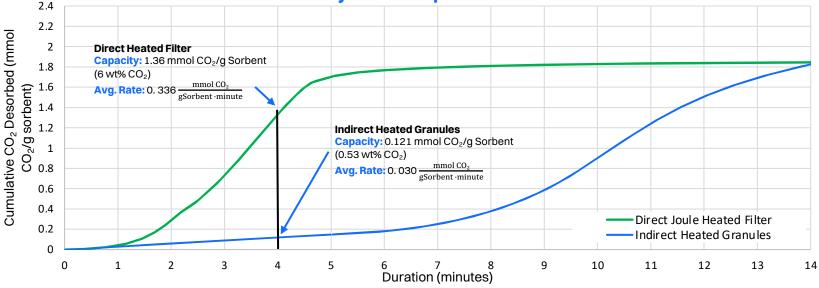
ECCOsorb 1 Cycle 5 Cumulative CO₂ Profile

ECCOsorb 1 shows potential to achieve target adsorption rate and working capacity

Sorbent Development: CO₂ Desorption Rate

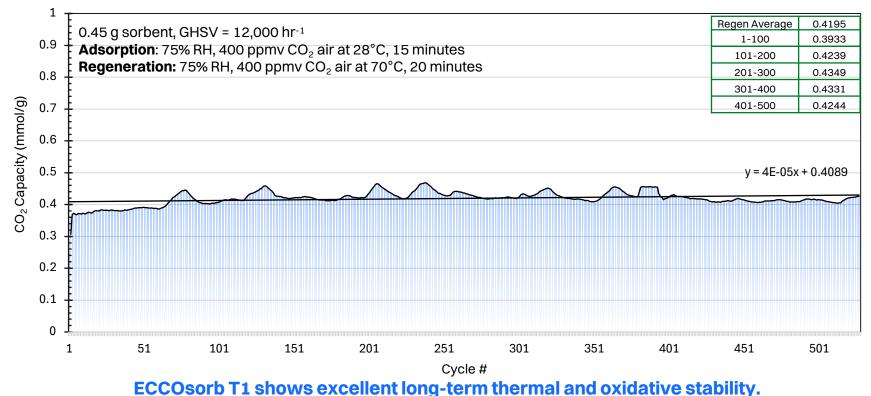
Indirect Heating Condition

Sorbent Form Factor: ECCOsorb 1 Granules in Packed Bed Sorbent Mass: 0.45 g Adsorption: 900 sscm humid air Regeneration: 70°C @ 10°C/min


Direct Joule Heating Condition

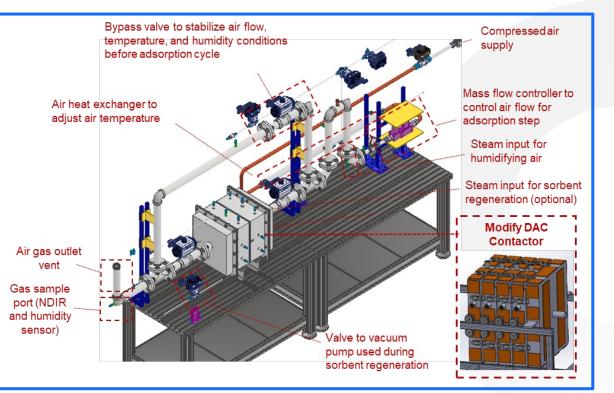
Sorbent Form Factor: conductive nonwoven filter with ECCOsorb 1 Sorbent Mass: 0.42 g Adsorption: 1,020 sccm humid air Regeneration: 70°C

SUST 200 N


Cycle 5 Comparison

Direct Joule heated filter shows 10x increase in desorption rate - can achieve performance targets

Sorbent Development: Cyclic Stability


ECCOsorb T1 Fast Aging Performance

Bench-Scale Test System

Modify existing bench system to incorporate new contactor design Finalizing design with the filter vendor

Community Benefits / Societal Considerations and Impacts

- Engaged external DEIA practitioner
- Drafted a DEIA Statement
- Initiated implicit bias training for employees
- Developed repository of Minority Business Enterprises, Minority Owned Businesses, Woman Owned Businesses and Veteran Owned Businesses to solicit services, materials, equipment bids.
- Seminar and internship programs in development with Department of Chemistry in the College of Science and Technology (COST), at North Carolina Agricultural and Technical State University (NC A&T) for fall 2024

Lessons Learned

- Minimizing water adsorption key factor in reducing energy for CO₂ removal
- Engage structured sorbent manufacturing early
- Utilizing existing manufacturing lines reduces cost of production and development work

Summary and Future work

Takeaway

- Structured sorbent developed ready for bench-scale testing of assembled filter panel
- Filter assembly is simple, lower cost, scalable, and robust
- Clear pathway for reducing DAC CO₂ capture cost

Ongoing Work

- Build bench-scale filter assembly, demonstrate stability over 500 cycles
- Update process model, TEA, and LCA

Thank You!

Raghubir Gupta rg@susteon.com President and CEO

Jian-Ping Shen

jps@susteon.com Principal Scientist

Arnold Toppo act@susteoninc.com

Process Design Engineer

James Zhou sjz@susteoninc.com Chief Science Officer

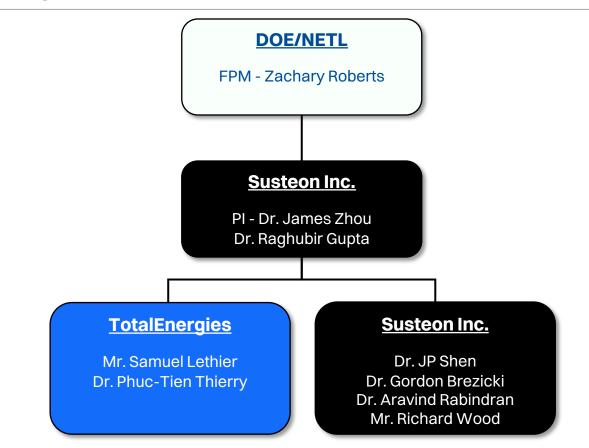
Richard Wood rw@susteoninc.com Lab Technician

Andrew Tong

at@susteoninc.com R&D Manager

Gordon Brezicki

gpb@susteoninc.com Senior Research Engineer


Aravind V. Rayer Rabindran

avr@susteoninc.com Senior Research Engineer

Appendix: Organizational Chart

Appendix: Project Schedule

Project Timeline										1	Months from Project Start Date Sate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24														
	Start Date	End Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 2	23 2
Task 1 - Project Management and Planning								B																	
Subtask 1.1 Project Management Plan	7/1/23	6/30/25																							
Subtask 1.2 Technology Maturation Plan	7/1/23	9/30/23																							
Subtask 1.3 State Point Data Table	2/1/25	3/31/25																					*		
Milestone 1a: Initial TMP within 90 days of Project Start		9/30/23			*																				
Subtask 6.1 and 6.2 Initial Techno-econimic Analysis and Life Cycle Analysis	7/1/23	10/31/23																							
Milestone 1b: Initial TEA and LCA within 120 days of Project Start		10/31/23				*																			_
Task 2 – Structured Sorbent Optimization																									
Subtask 2.1: Low-pressure Drop Support Evaluation	8/1/23	10/30/23																							
Subtask 2.2: Sorbent Washcoat Optimization	9/1/23	2/29/24																							
Subtask 2.3. Structured Material Characterization	10/1/23	4/30/24																							
Subtask 2.4. Structured Sorbent Short-term Testing	10/1/23	1/30/24																							
Subtask 2.5. Structured Sorbent Long-term Testing	1/1/24	4/30/24																							
Milestone 2: Successful optimization of structured sorbent in the lab with cyclic CO ₂ capacity > 6.0 wt%		4/30/24										*													
Task 3 – Bench-Scale Design and Fabrication																									
Subtask 3.1. Bench-Scale System Design	1/1/24	4/30/24																							
Subtask 3.2. Bench-Scale System Fabrication	3/1/24	6/30/24																							
Milestone 3: Completion of design and fabrication of a bench-scale system		6/30/24												*											
GO/NO-GO Decision to Enter BP2 6/30		0/24											\star						B	22					
Task 4 - Structured Sorbent Testing																									
Subtask 4.1. Bench-Scale Structured Sorbent Fabrication	7/1/24	1/31/25																							
Subtask 4.2. Structured Sorbent Characterization	7/1/24	1/31/25																							
Subtask 4.3. Structured Sorbent Bench-Scale Testing	7/1/24	2/28/25																							
Milestone 4: Less than 5% capacity fade after 100 cycles		2/28/25																				*			
Task 5 - Process Design and Modeling																									
Subtask 5.1. Process Model Development and Validation	7/1/24	1/31/25																							
Subtask 5.2. Desorption Energy Optimization	9/1/24	3/31/25																							
Subtask 5.3. Process Cycle Design	10/1/24	6/30/25																							
Milestone 5: Process model which accurately predicts performance (adsorb/desorb rate, capacity, desorb heat) within 5% validated against experimental results to date.		6/30/25																							
				_	_	-																			
Task 6 - Techno-Economic Analysis and Life-Cycle Assessment																				1					+
	11/1/24	3/31/25	-																						
Task 6 - Techno-Economic Analysis and Life-Cycle Assessment	11/1/24	3/31/25 3/31/25															_								+
Task 6 - Techno-Economic Analysis and Life-Cycle Assessment Subtask 6.1 - Techno-Economic Analysis (TEA) Subtask 6.2 - Life Cycle Analysis Milestone 6: High-fidelity TEA and LCA to assess the cost of CO; capture and impact on GHG emissions																							*		╈
Task 6 - Techno-Economic Analysis and Life-Cycle Assessment Subtask 6.1 - Techno-Economic Analysis (TEA) Subtask 6.2 - Life Cycle Analysis <u>Milestone 6</u> : High-fidelity TEA and LCA to assess the cost of CO ₂ capture and impact on GHG emissions from the proposed technology compared to SOTA.		3/31/25																					*		
Task 6 - Techno-Economic Analysis and Life-Cycle Assessment Subtask 6.1 - Techno-Economic Analysis (TEA) Subtask 6.2 - Life Cycle Analysis Milestone 6: High-fidelity TEA and LCA to assess the cost of CO; capture and impact on GHG emissions		3/31/25																					*		

