

Integrated Bench-Scale Testing of a Structured Sorbent for Direct Air Capture DE-FE0032243

Andrew Tong Arnold C. Toppo Raghubir Gupta

2024 Carbon Management Research Project Review Meeting

Title	Integrated Bench- Sorbent for Direct	Scale Testing of a Structured Air Capture
Funding Solicitation	DE-FOA-0002614	AOI2B
Award No.	DE-FE0032243	
Period of Performance	7/01/2023 - 06/30/	2026
Project Funding	DOE: \$3M	Cost-Share: \$0.75M
Overall Project Goal	Design, build, and to system for continue the electrically hea (SMA)	est an integrated bench-scale DAC ous production of >1 TPY CO ₂ using ted structured material assembly
Project Participants	Susteon Inc. and To	otalEnergies
DOE/NETL Project Manager	Mr. Zachary Robert	S

Objective:

Reduce the overall cost of DAC through the development of a structured material assembly (SMA) and integrated DAC system design with sorbent regeneration using low-carbon electricity (TRL 4 to TRL 5).

Approach

- 1. Perform a detailed technical risk assessment to identify high-risk areas.
- 2. Design and optimize SMA manufacturing and performance.
- 3. Design, build, test integrated Bench-scale system for >1TPY CO_2 production.
- 4. Refine and update process and economic model.
- 5. Refine commercialization plan.

Susteon's Sorbent-Based DAC Technology

Technology Roadmap

Bench-Scale Component Testing (1 kg/day)

3

2

1

4

Lab-scale Reactor Testing (3 g/day)

- Verified sustained performance of structured sorbent
- Proof of concept resistive layer coating showing high CO₂ desorption rates

- Optimized sorbent and heating material washcoat synthesis on selected structured sorbent
- Verified performance of structured sorbent for adsorption and desorption under Joule heating

Lab-scale TGA Testing

Na-based sorbent selected

Elucidation of reaction pathway

TRL

2020

2022

SUST 20 N

Bench-Scale Component Testing (FE0032118)

1 kg/day Bench Unit Design

Bench-Scale Component Testing (FE0032118)

CO₂ Capacity Summary

Air Flow: 413 slpm (65 lb/hr) Relative humidity: ~ 50%	N_2 flow: 4 slpm Vacuum purge pressure: -8 psig
Temperature: 20-30°C Duration: 45 minutes	Max temperature: 100°C Duration: 120 minutes
Temperature: 20-30°C Duration: 45 minutes	Max temperature: 100° C Duration: 120 r

Technology Roadmap

DAC Plant Demonstration Plant

(15 ton/day)

- □ Fully integrated DAC unit operations
- Heat integration
- □ Variability in site ambient conditions
- CPU performance, BOP performance and reliability

DE-FE0032243

Integrated Bench-scale System (>3 kg/day)

- Continuous, high purity CO₂ production
- Engineering design validation
- □ >1000 cycle stability

DAC Module Demonstration

(1 ton/day)

Full scale Module testing

- Dever distribution (at module scale) validation
- □ Full scale sealing performance

2024

8

7

6

5

TRL

2026

Structure Material Assembly (SMA)

- ✓ High electric to thermal heating efficiency (up to 95%)
- ✓ Low thermal mass (~50 wt% washcoat loading)
- ✓ Low pressure drop (<200 Pa)

Initial TEA Results

SMA Manufacturing: Adsorption Enhancement

Laboratory SMA Testing

Increased CO₂ capacity of SMA by over 4x

via SMA Optimization

Sorbent

Tuned promoter and alkali carbonate ratio

• Support

Doubled surface area and pore volume for greater sorbent active site accessibility to CO_2 in air

Substrate

Enhanced surface area resulting in 80% increase in washcoat loading

SMA Manufacturing: Adsorption Enhancement

Cycle 14 Adsorption Profile

Exceeded target adsorption rate by **125%** Increased volumetric productivity = lower CAPEX

SMA Manufacturing: Desorption Performance

Cumulative CO₂ Desorption Profile

Avg. Rate mol CO₂/kg/min **Direct Joule Heating** 11°C/min 0.075 **Direct Joule Heating** 95°C/min 0.33 **External Heating** 10°C/min 0.0075 30 50 10 20 40 60 Duration (min)

Target desorption rates achieved using direct Joule Heating

Integrated DAC Bench System: Process Sequence

Integrated DAC Bench System: Process Flow Diagram

Integrated DAC Bench System: SubModule Design

- 1. Minimizing dead volume increases CO₂ purity.
- 2. Increased CO_2 purity reduces CAPEX and OPEX in OSBL downstream CO_2 purification.
- 3. Inherently thermally and electrically insulating material reduces parasitic energy loss and electrical safety risk.

Integrated DAC Bench System: SubModule Design

Aluminum Honeycomb Gas Sealing Panel (3"/7.62mm core thickness, 0.003"/0.0762mm skin thickness)

Integrated DAC Bench System: SubModule Electrical Circuit

Integrated DAC Bench System: Module Assembly and Status

Deliverable Status

- PFD, P&IDs, H&MB, and Conceptual Mechanical Design Complete
- Fabricators identified and preliminary testing ongoing
- Vendors for components identified
- RFQs released and procurement ongoing

Key Milestone

Module Fabrication and Testing (Q4 2024)

Community Benefits / Societal Considerations and Impacts

- Engaged external DEIA practitioner
- Drafted a DEIA Statement
- Initiated implicit bias training for employees
- Developed repository of Minority Business Enterprises, Minority Owned Businesses, Woman Owned Businesses and Veteran Owned Businesses to solicit services, materials, equipment bids.
- Seminar and internship programs in development with Department of Chemistry in the College of Science and Technology (COST), at North Carolina Agricultural and Technical State University (NC A&T) for Fall 2024

Lessons Learned

- SMA performance is the key driver for CO₂ production cost.
- Water in air (sensible and latent heat of vaporization) is the greatest contributor to DAC's energy intensity.
- Perform technology risk assessment early and structure prototyping and development around the risk mitigation.
- Modular design for technology, project, and financial risk mitigation.
- Solicit customer, supplier, and fabricator feedback early and often.
- Partner early with the first technology adapter and incorporate the feedback from this partner into design and operation of the bench/pilot units.

Ongoing Development: Technology Roadmap

DAC Plant Demonstration Plant

(15 ton/day)

Fully integrated DAC unit operations

Heat integration

□ Variability in site ambient conditions

CPU performance, BOP performance and reliability

DE-FE0032243

Integrated Bench-scale System (3 kg/day)

- Continuous, high purity CO₂ production
- Engineering design validation
- □ >1000 cycle stability

2024

8

7

6

5

TRL

2026

Thank You!

Raghubir Gupta

rg@susteon.com President and CEO

Jian-Ping Shen jps@susteon.com Principal Scientist Andrew Tong at@susteoninc.com R&D Manager

Richard Wood rw@susteoninc.com Lab Technician Arnold Toppo act@susteoninc.com Process Design Engineer

Appendix: Organizational Chart

Project Schedule

Project Timeline														Mont	ths fro	om Pi	roject	Start	Date											
									BP1															BP2						
	Start Date	End Date	1 2	2 3	4	5 6	7	8	9 1	0 11	1 12	13	14 1	5 1	6 17	18	19	20 2	1 2	2 23	24	25	26 2	27 28	3 29	30 3	31 32	33 ?	34 35	36
Task 1.0 - Project Management and Planning																														
Subtask 1.1 Project Management Plan	1-Jul-23	30-Jun-26																												
Subtask 1.2 Technology Maturation Plan	1-Jul-23	31-Mar-26																											—	
Subtask 1.3 – State Point Data Table (SPDT)	1-Jan-26	31-Mar-26																												
Milestone 1.1: Initial TMP within 90 days of project start		30-Sep-23		+																								1		
Milestone 1.2: Final TMP within 90 days prior to project completion		31-Mar-26																										+		
Milestone 1.3: Final state point data table due 90 days prior to project completion		31-Mar-26																										+		
Task 2.0 – Detailed Design of Integrated DAC Prototype System																														
Subtask 2.1 – Develop Functional Design Specifications	1-Jul-23	31-Aug-23																										1		
Subtask 2.2 – Complete Piping and Instrumentation Diagram (P&ID). Control Specifications	1-Aug-23	31-Oct-23																										1		
Subtask 2.3 – SMA Reactor Module Design	1-Sep-23	31-Dec-23																												
Subtask 2.4 - PHA, Instrument List, and Equipment and Fabricator Selection	1-Jan-24	31-Mar-24																										T T		
Subtask 2.5 – Balance of Plant Design	1-Feb-24	31-Mar-24																										1		
Milestone 2: DAC prototype rig design complete and ready for fabrication		31-Mar-24							+																			1		
Task 3.0 – Structured Sorbent Synthesis for Bench Unit																												1		
Subtask 3.1 - Procurement of equipment and coating components	1-Sep-23	31-Mar-24																												
Subtask 3.2 - Monolith Substrate and Coating Material Procurement	1-Jan-24	31-Mar-24																												
Subtask 3.3 - SMA Synthesis and Characterization	1-Mar-24	30-Jun-24																										T T		
Subtask 3.4 - Sorbent Synthesis for Integrated Bench Prototype Testing	1-Jul-24	31-Dec-24																												
Milestone 3: SMA synthesis equipment installed and protocol is verified. CO2 adsorption and desorption on																												1		
synthesized samples >3.0 wt% (gCO2/gSorbent)		30-Jun-24									•																			
Task 4. Integrated Bench Unit Construction, Installation and Commissioning																												1		
Subtask 4.1 - Completion of Vendor Design Drawings and Initiate Component/Equipment Procurement	1-Mar-24	30-Jun-24																												
Subtask 4.2 - Integrated Bench Unit Construction and Installation	1-Jul-24	30-Sep-24																												
Subtask 4.3 - Bench Unit Commissioning and PSSR	1-Sep-24	31-Dec-24																												
Milestone 4: DAC prototype rig setup and ready to operate		31-Dec-24														+														
Go/No-Go Decision Point 1 to Enter BP2	31-D	ec-24														۲												1		
Task 5. Parametric and Accelerated Long Term of Integrated Bench Prototype Test Rig																														
Subtask 5.1 - Parametric Testing with Integrated Prototype Test Rig	1-Jan-25	30-Jun-25																												
Subtask 5.2 - Accelerated Long Term of Integrated Bench Prototype Test Rig	1-Jul-25	30-Mar-26																												
Milestone 5.1: Projected adsorption and desorption rates achieved (Adsorption: >0.01 mol CO2/kg																												1		
sorbent/min; Desorption: >0.01 mol CO2/kg sorbent/min)		30-Jun-25																			+									
Milestone 5.2: Sustained CO2 Loading, CO2 purity, and adsorption/desorption rate achieved over 1000		20.14 26																												
adsorption/desorption cycles		30-Mar-26																										•		
Task 6. Techno-Economic Analysis & Life-Cycle Assessment																														
Subtask 6.1 – Process Model Update	1-Apr-25	31-Dec-25																												
Subtask 6.2 – Techno-Economic Analysis	1-Apr-25	30-Jun-26																												
Subtask 6.3 – Life Cycle Analysis	1-Jul-25	31-Mar-26																												
Milestone 6.1: Initial TEA and LCA report due 120 after project start		31-Oct-23																												
Milestone 6.2: Final TEA and LCA report due 90 prior to project completion		31-Mar-26																												
Task 7. Technology Environmental Health and Safety (EH&S) Risk Assessment																					1									\square
Milestone 7: Final EH&S analysis due 90 prior to project completion		31-Mar-26																			1							+		\square
Task 8. Technology Gap Analysis (TGA)																					1									\square
Milestone 8: Final TGA within 90 days prior to project completion		31-Mar-26			1											1												+		

