
Advancing a Low-Temperature, Low-Cost Direct Air Capture System Based on Organic Chemistry (FE0032269)

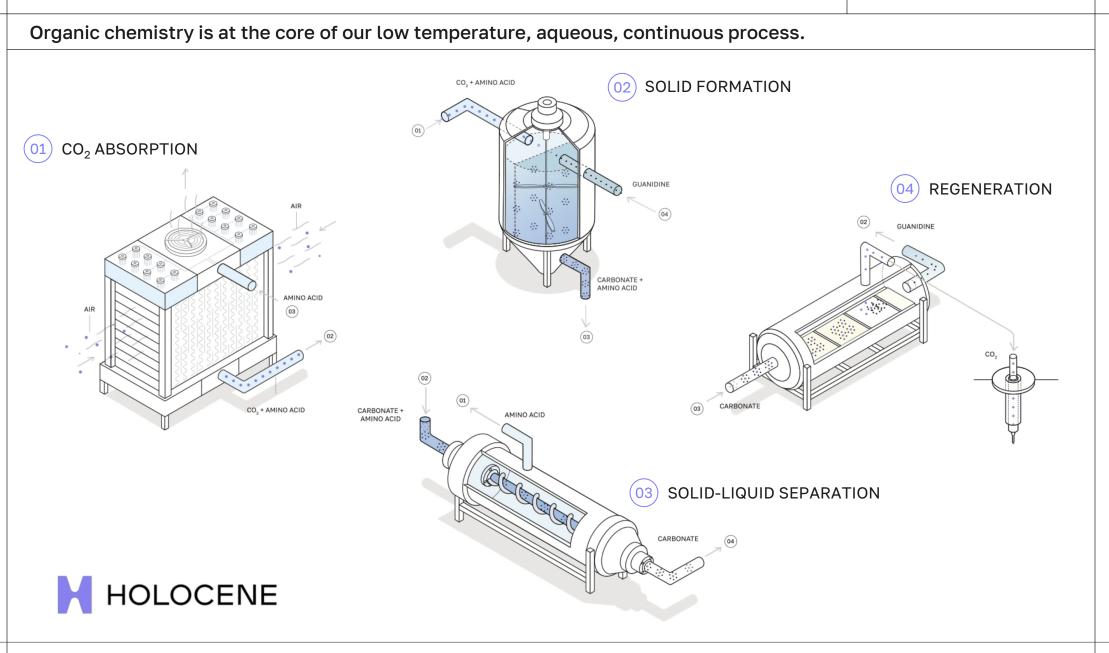
Anca Timofte, CEO & CO-FOUNDER

HOLOCENE

2024 FECM & NETL Carbon Management Research Project Review Meeting

OVERVIEW

LINEAGE	COMPANY	CAPACITY
Climeworks CO280 ETH zürich McKinsey & Company OPatch	13	10 s
Founded from a historic lineage of CDR R&D + commercial homes	Employees, across 5,000 square feet of industrial space	Of tonnes of carbon removal capacity from our pilot facility
FUNDING	CUSTOMERS	SUPPORTERS
>\$6 м	>\$10м	Streakthrough Energy MA Energy Follows Energy MA Energy MA
Dollars (\$) in up-front, non-dilutive funding awarded to-date	Secured customer contracts supporting our future CDR facilities	A deep, diverse, and steadfast bench of supporters

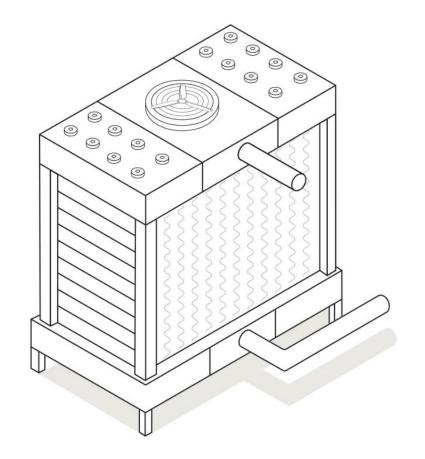

Advancing a Low-Ten	nperature, L	.ow-Cost Dir	ect Air Capt	ure System E	ased on Organic	Chemistry		
AGENCY	United States Department of Energy, Office of Fossil Energy and Carbon Management							
TIMELINE	START DATE Oct. 1, 2023 END BP1 Sep. 30, 2024 END BP2		Sep. 30, 2025					
DESCRIPTION	Holocene Climate Corporation plans to partner with Oak Ridge National Laboratory (ORNL) to conduct bench-scale testing of a new optimized direct air capture system using amino acids and guanidine compounds, a chemical process invented at ORNL. Holocene aims to use ORNL's chemistry to further develop and deploy the technology on a commercial scale.							
BUDGET	TOTAL	\$1.92MM	FEDERAL	\$1.50MM	COST SHARE	\$0.42MM	HOL %	55%
LOCATIONS(s)	Knoxville, TN and Oak Ridge, TN							
TASK #1	PROJECT MANAGEMENT & PLANNING: Project management, technology maturation planning, techno- economic analysis (TEA), life cycle assessment (LCA), state-point data tables, DEI & CBP work							
TASK #2	DE-RISKING SORBENT COSTS - STABILITY & PRODUCTION: Test setup, sorbent stability assessment, sorbent production cost de-risking							
TASK #3	DEVELOPMENT OF TRANSFORMATIVE SOLID-LIQUID SEPARATION: Validating crystallization process parameters, conceptual design of crystallization process							
TASK #4	<u>CONTACTOR DESIGN & OPTIMIZATION</u> : Contactor design & build, contactor design evaluation, experimentation, modeling and analysis							
TASK #5	ADVANCED DESORPTION PROCESSES TO REDUCE THERMAL ENERGY: Vacuum-assisted desorption, steam- assisted desorption							

For original grant announcement, please reference this link regarding FOA 2614 selections: https://www.energy.gov/fecm/project-selections-foa-2614-carbon-management-round-1

OUR PROCESS: 4 UNIT OPS, 2 CONTINUOUS LOOPS

TECHNOLOGY OVERVIEW

4

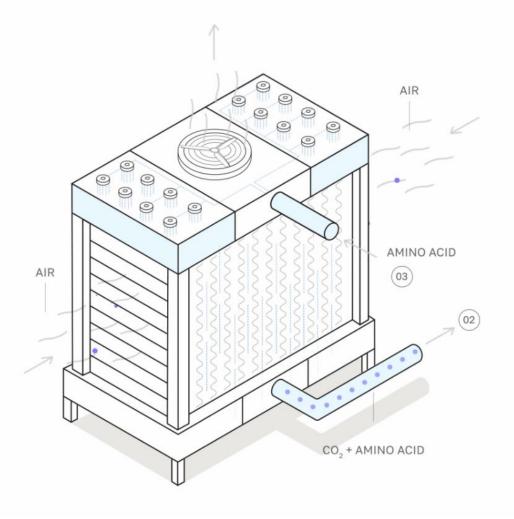

Source: Holocene

An air-liquid contactor facilitates cross-flow absorption via an amino acid solution and ambient air.

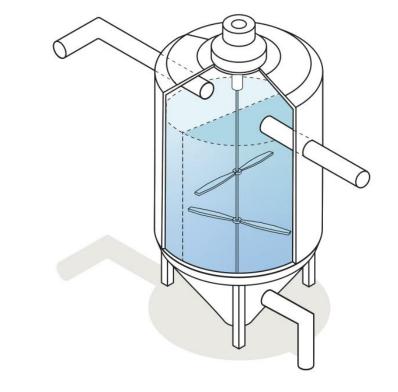
Moving CO₂ from air into our system

The first step of our process brings a liquid – an amino acid & water solution – into contact with ambient air that contains CO_{2.}

We continuously pass air through a thin liquid film via structured packing to enable the CO_2 to react with the amino acid. This binds the CO_2 within our system so it can be sent on to the second stage.


5

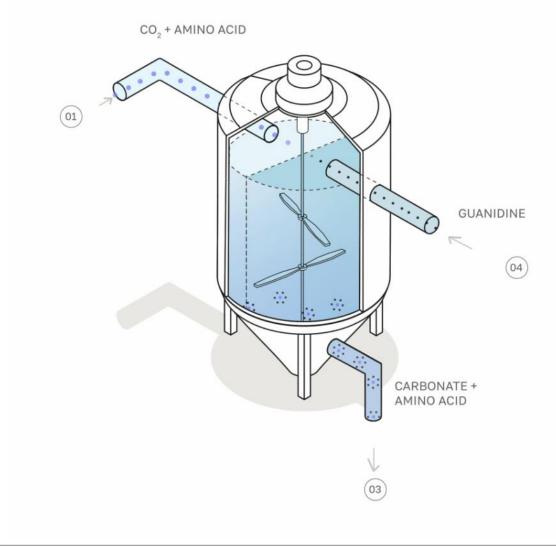
An air-liquid contactor facilitates cross-flow absorption via an amino acid solution and ambient air.


Moving CO₂ from air into our system

The first step of our process brings a liquid – an amino acid & water solution – into contact with ambient air that contains CO_{2} .

We continuously pass air through a thin liquid film via structured packing to enable the CO_2 to react with the amino acid. This binds the CO_2 within our system so it can be sent on to the second stage.

A crystallization reaction is driven by mixing a CO_2 -containing amino acid solution with a guanidine.



Transforming CO₂ from liquid to solid

The second step of our process concentrates CO_2 from the amino acid solution into a solid form. This reaction is driven by the mixing of the amino acid + CO_2 solution with a guanidine.

This chemical has a stronger preference for CO_2 than the amino acid, causing a reaction that spontaneously forms a solid. The CO_2 is now trapped within the solid, and the solid-liquid mixture moves on to the third step.

A crystallization reaction is driven by mixing a CO_2 -containing amino acid solution with a guanidine.

Transforming CO₂ from liquid to solid

The second step of our process concentrates CO_2 from the amino acid solution into a solid form. This reaction is driven by the mixing of the amino acid + CO_2 solution with a guanidine.

This chemical has a stronger preference for CO_2 than the amino acid, causing a reaction that spontaneously forms a solid. The CO_2 is now trapped within the solid, and the solid-liquid mixture moves on to the third step.

Task #3

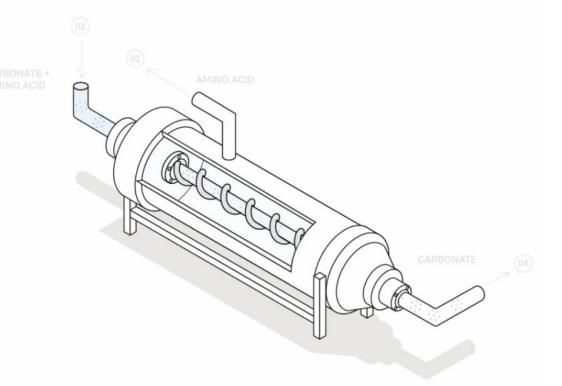
9

The separation unit operation is performed to isolate the CO2-containing solid, returning the amino acid solution.

Separating the solid & the liquid

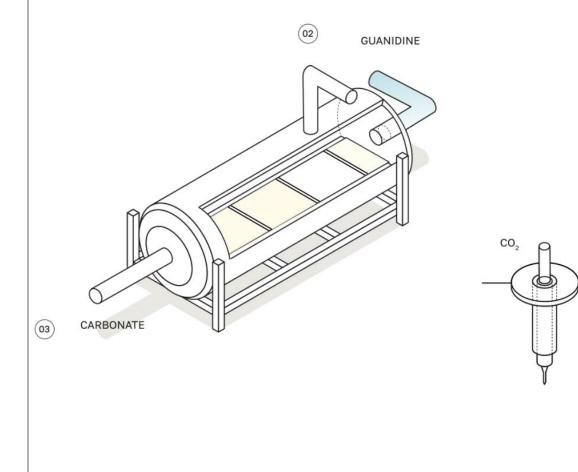
The third stage separates the CO2containing solids from the liquid solution. This results in a clean, solid mass that can be effectively managed, along with the original amino acid mixture.

This original mixture is returned as the input to the first stage, where it can capture CO2 again. Separating the solids is critical to enabling efficient energy delivery in the final step of our process.


Source: Holocene

The separation unit operation is performed to isolate the CO2-containing solid, returning the amino acid solution.

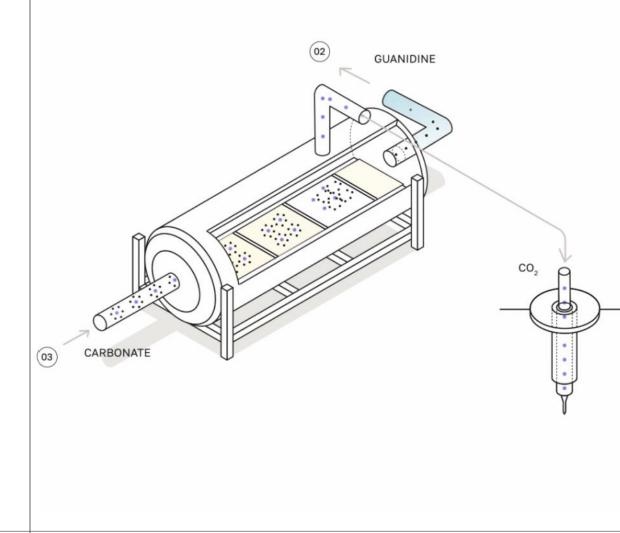
Separating the solid & the liquid


The third stage separates the CO2containing solids from the liquid solution. This results in a clean, solid mass that can be effectively managed, along with the original amino acid mixture.

This original mixture is returned as the input to the first stage, where it can capture CO2 again. Separating the solids is critical to enabling efficient energy delivery in the final step of our process.

Task #3

Via low-temperature (~100°C) heat, the CO_2 is liberated from the solid, and the guanidine is regenerated again.


Liberating CO₂ for long-term storage

Finally, the solid mass is heated to low temperatures with renewable energy.

This heat releases the CO_2 into pure, gaseous form where it is collected and sequestered permanently underground.

The remaining solid is the original guanidine which is returned to the second stage of the process to work, again.

Via low-temperature (~100°C) heat, the CO_2 is liberated from the solid, and the guanidine is regenerated again.

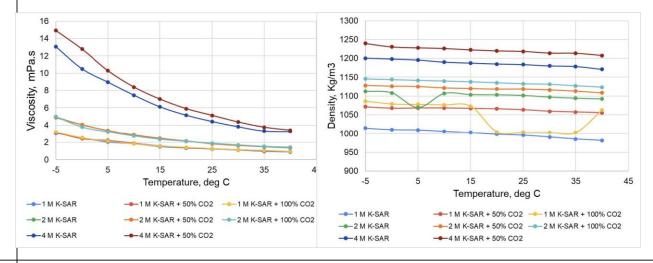
Liberating CO₂ for long-term storage

Finally, the solid mass is heated to low temperatures with renewable energy.

This heat releases the CO_2 into pure, gaseous form where it is collected and sequestered permanently underground.

The remaining solid is the original guanidine which is returned to the second stage of the process to work, again.

	Description of Objectives	Q4 '23 – Q1 '24	Q2 '24— Q3 '24	Q4 '24 – Q1'25	Q2 '25- Q3'25
Task 1	Preliminary TEA & LCA TMP CBP work – first review Final TEA & LCA				
Task 2	Possible degradation mechanisms identified + analytical capability set-up Sorbent costs @ scale investigated 100+-eq. cycles investigated with test				
Task 3	Crystallization parameters identified Crystallization process developed & optimized for liquid-solid separation Basic equipment designed				
Task 4	Absorption model build & validation Contactor built & commissioned Contactor performance validation				
Task 5	Investigation of vacuum-assisted regen Investigation of steam-assisted regen				


Progress

Develop a model for CO2 absorption and validate it with data collected in relevant conditions

Objectives & Progress: Developing a model for the CO2 absorption process in an air-liquid contactor that takes into account Holocene's chemistry, physical properties of the aminoacid solution, etc that helps determine the optimal design of the contactor as well as operating conditions (concentrations, air flowrates, etc).

Commissioning completed. Air-liquid contactor performed within specifications (pressure drop, CO2 absorption rate, liquid distribution, residence time).

Learnings. Viscosity and density of the amino acid solution impact liquid-side mass transfer rates significantly.

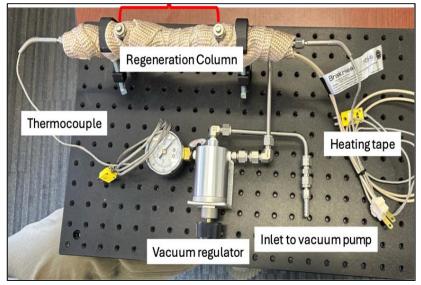
Design Parameter	Min. Requirement	Holocene's Pilot Plant Contactor	
Packing length / air travel distance (m)	> 1.5	1.75	
Packing height (m)	> 0.5	1.19	
Packing width (m)	> 0.5	0.65	
Packing specific surface area (m2/m3)	> 150	150500	
Volumetric air flow (m3/h)	> 2,0004,000	3,622	

Progress

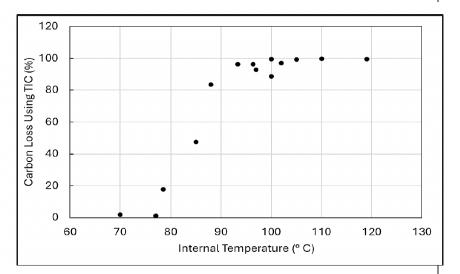
5

Investigate the possible regeneration temperature reductions through vacuum-assisted processes

Objectives & Progress: Demonstrating the impact of pressure during the regeneration process, and confirming the removal of water and CO2 from guanidine carbonates using indirect heating and vacuum.


Test Rig & Analytical Methods (TGA) in Place. ORNL designed and built a simple setup to study the regeneration of guanidine carbonates.

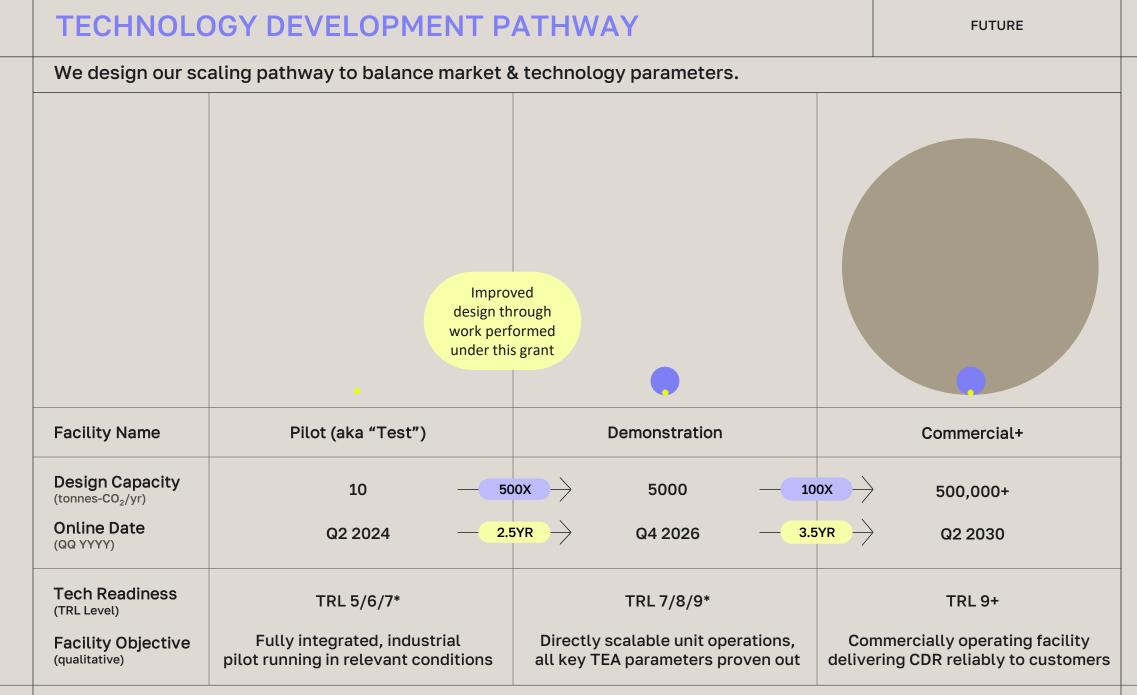
Campaign Parameters: Tested pressures of 0.2 atm (a) to 1 atm (a) and temperatures of 70-110C.


For TGA campaigns, sample weight, atmospheric gas (N2/air/CO2), particle size, heating rates were varied.

Learnings. For certain carbonates of guanidine derivates, tests at 0.2 atm(a) show almost the complete removal of CO2 at temperatures ~85C. Vacuum could be a useful process condition to enable better regenerations. Regeneration starts earlier than anticipated, at 80C.

From the TGA campaigns, method was validated to allow for regeneration kinetics investigation (Q3 '24).

<u>Test rig</u>


WHAT: Holocene host tours, webinars, and lectures for local community members. These have included groups of teachers, high school students, college students and student groups, politicians, global communities, and many TNbased institutions.

WHEN: ongoing

WHERE: virtual & community centers & local conferences

WHY: In person, community engagement via tours, lectures, and webinars are a core part of our broader engagement efforts.

HOW: targeted relationship building with key community leaders in Knoxville & beyond.

Source: Holocene | *Range of TRL's provided to acknowledge (1) advancing facility performance during lifetime, AND (2) ranging TRL evaluations from independent experts.

anca@theholocene.co