An Integrated and Continuous Bench-Scale Passive DAC Demonstration (DE-FE0032241)

2024 FECM/NETL Carbon Management Research Project Review Meeting

August 5

 Scott Phillips

Steare

Mustapha Soukri Mike Izenson Conald Whisenhunt John Sanders

August 5th, 2024

Acknowledgment

This material is based upon work supported by the Department of Energy under Award Number DE-FE0032241.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Project Overview

Funding:

Federal: \$3,000,000 □ Cost-Share: \$750,000

Overall Project Performance Dates:

 \Box BP1: 6/15/2023 - 6/14/2024 \Box BP2: 6/15/2024 - 6/14/2025 \Box BP3: 6/15/2025 - 6/14/2026

Project Participants:

THRTI International (Prime) □Creare, LLC. □Edare, LLC. **OGE** Vernova

Project Objectives:

The overall objective of the project is to design, fabricate, and continuously test a wind-driven bench-scale DAC integrated process and measure key performance metrics

\triangle **RP1**

- \triangleright Sorbent scale-up to up to 10kg and coating formulations optimization
- Wind-driven contactor performance modeling

 \triangle RP2

Design, fabricate and commission a wind-driven bench-scale contactor system

\div **BP3**

- \triangle Continuous long-term testing (\geq 1 month)
- Refine the DAC process TEA and LCA

BP1 Project Milestones

3) (4

Milestone 2.1 **BP1**

3 Kg sorbent material synthesized to support bench-scale field testing

Milestone 2.1

7 Kg sorbent material synthesized to support bench-scale field testing

Milestone 2.2

2

Uniform sorbent coating with a CO2 working capacity in excess of 1 mmol CO2/g of sorbent and strong film adhesion to the SS plate surface.

1

Milestone 3.1

5

6

Deliver the Bench-scale contactor design

Milestone 3.2

Deliver the design core plates that meet the thermal-fluid requirements for the contactor

Milestone 3.1

Develop a system model to aid in data assessment.

Sorbent Background –DAC

Amine-based Phosphorous (P) Dendrimer Sorbent for DAC

- \cdot Highly stable sorbent, which captures $CO₂$ from ambient air and then releases it when heated to moderate temperatures (80 °C) while demonstrating insensitivity to ambient humidity.
	- Robust performance
	- \Box No leaching issue
	- □ Low regeneration temperature
	- High tolerance to water
	- Excellent thermal stability

Polyamine *P***-Dendrimer Sorbent Synthesis**

Sorbent Scale-Up

We've prepared ≥12Kg of P-dendrimer sorbent.

Solvent Recycling

- Solvents constitute major portion of sorbent production expenses.
- We recover about 75% of the solvents used in the synthesis.

By recycling solvents such as THF, Ethyl acetate, and MeOH, we could reduce ~20% of the Sorbent Synthesis Cost.

Sorbent Structure Optimization

Effect of surface morphology on sorption properties of coating

Sorbent Structure Optimization

Coating thickness

- *Total CO2 capture capacity increased with film thickness but decreased amine efficiency, as additional diffusional resistance for thicker films limits access to available amine sites*
- *The mechanical stability was evaluated by the tape test. Our coating formulation exhibit an excellent adhesion to the Stainless Steel.*

Binder modification

- *RTI binders lead to a much smoother surface structure with minimized porosity, reducing the sorbentgaseous interaction*
- *This necessitated revisiting our formulation by minimizing the component responsible while still retaining the sorbentsupport adherence.*

Lessons Learned

 Small particle size has a positive effect, resulting in high intraparticle mass transfer, but is negative as well, since it produces high inter-particle resistance to gas flow.

- Varying the coating thickness will impact the diffusion resistance and reaction kinetics
	- Chemical reaction is the dominant step during the entire regime,
	- Pore diffusion is important during the initial stages,
	- Solid diffusion resistance increases over time as the number of accessible amines decreases with capture

Wind-Driven Bench-Scale Contactor

- Bench-Scale Contactor Design
	- Low resistance to wind-driven flow through the contactor (CFD)
	- Features that can be fabricated using hybrid additive manufacturing (fabrication experiments)
	- We specified the overall system layout and identified rugged, durable seals (mechanical design)
- System Model
	- We formulated a MATLAB/SimscapeTM model for overall system performance
	- Accounts for heat and mass transfer phenomena that govern capture rate and energy consumption
	- Using model to assess key design and operational tradeoffs, provide data for TEA
- Contactor Plate Design
	- We specified key features of the tooling needed to produce contactor plates
		- Based on results of CFD analysis and fabrication experiments
	- We used these parameters to produce tooling designs for the A and B contactor plates

Contactor Design Concept

- Based on a compact, cross-flow heat exchanger
	- Open channels: Air side
	- Enclosed channels: Steam side
- $CO₂$ Capture
	- Wind drives air flow through coated, open channels
	- Wind provides post-regeneration cooling as well
- Regeneration
	- Indirect heating
	- Partial vacuum

Early Contactor Prototype for Long-Term Durability Testing

Basic Contactor Design

Contactor Core Design Modeling

- CFD model for contactor in open flow
	- Modeled core as a porous element
	- Anisotropic permeability based on CFD calculations for individual channels
	- Composite properties based on contactor design features
- Initial array temperature $= 85\degree\text{C}$ (desorption temperature)
- Simulated three minutes of cooldown time
	- Monitored temperatures to determine time to reach adsorption temperature
- For final design: CFD and spreadsheet analysis show that the contactor cools down fast enough for nominal 4 m/s wind speed

Top-Down View of Temperature Contours Through Array Centerplane after 3 Minutes of Cooldown

Contours of Static Temperature (k) (Time=1.8000e+02) May 07, 2024 ANSYS Fluent Release 17.2 (3d, dp, pbns, sstkw, transient)

Contactor Module: Key Design Parameters

- **Design for a 1 kg/day contactor**
	- CFD results
	- Requirements for fabrication and sorbent coating
- **Key design features**
	- Channel pitch and spacing
	- Features to maintain uniform channels
- **Coating mass: 2.9 kg**
- **Performance estimated based on**:
	- Detailed laboratory measurements of sorbent performance
	- Average hourly climate data for southeastern US

DAC System

Contactor Modules

- Four modules $\approx 1.5 t_{CO}/yr$
- Regeneration in pairs

Indirect Heating System

- Commercial steam boiler
- valves control flow through contactors
- Condenser controls regeneration temperature
- Replenished as needed using water recovered from contactor

Carbon Concentration System

- Contactor isolation subsystem
- Commercial scroll compressor
- Condenser for first-stage water separation
- $CO₂$ storage under pressure

Key measurements

- **Environmental conditions**
- Isolation panel position
- Steam temperature $\&$ pressure during regeneration
- \blacksquare Mass of CO₂ in storage tank

Simulation Results

- o System Operation
	- One-hour cycles
	- Regeneration at 70°C
- o Environmental Conditions
	- 30° C, 75% RH
- o Typical Results
	- Time dependent sorption and desorption rates
	- Integrated $CO₂$ and $H₂O$ storage
	- Energy input broken down by system element

Summary of Community Benefits/Societal Considerations and Impacts

Identified community organizations and community leaders that are in or serve community members who live in disadvantaged communities

Developed task outreach materials

Community Benefits/Societal Considerations and Impacts

Conducted outreach activities

Coordinate and support presentations on Climate Change

Coordinate and collect feedback from the communities and assess the best path forward for technology demonstration and deployment.

Plans for Future Testing & Development

Acknowledgment

DOE Project Manager: Erika Bittner **CDR Team**

Fossil Energy and Carbon Managemen

Thank you

Contact: Mustapha Soukri| email: msoukri@rti.org