Negative-Emissions Enabled Direct Air Capture with Coupled Electro-Production of Hydrogen at a 5 kg-per-hour Scale (DE-FE0032255)

Xin Gao, Jesse Thompson, and Kunlei Liu Institute for Decarbonization and Energy Advancement at PPL R&D Center University of Kentucky August 5th, 2024

Project Overview

Institute for Decarbonization and Energy Advancement

¶ College of
⊪ Engineering

Institute for Decarbonization and Energy Advancement

Energy Advancement

Institute for Decarbonization and

Solvent-Based Technology Applied to DAC

Process Sketch for DE-FE0032255

CO² release $2H_2O$ + electrons $\rightarrow H_2 + 2OH$ $2H_2O \rightarrow O_2 + 4H^+ +$ electrons **Alkaline water electrolysis CO² capture** $CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O$

 $H^+ + CO_3^2 \rightarrow HCO_3^ H^+ + HCO_3^- \rightarrow CO_2 + H_2O$

Solvent regeneration K^+ + OH \rightarrow KOH

Feature: producing H_2 for sale, offsetting DAC operating cost

History of DAC and H₂ Production Research
DAC 1.0, proof-of-concept DAC 2.0, size up DAC 2.5, point-source integration

DAC 1.0, proof-of-concept **DAC 2.0**, size up **DAC 2.5**, point-source integration

2020 - 2021

- 30 W regenerator
- \cdot 2 L min⁻¹ air contactor
- <1 kg yr¹ CO₂ capture process
- <1 kg $yr⁻¹$ H₂ production
- Standard operation and explored depolarized operation DE-FE0031962 | energy DE-FE0032125

2021 - 2023

- 210 W regenerator
- 10 cfm air contactor
- 200 kg yr¹ CO₂ capture
- 10 kg yr⁻¹ H₂
- · Zero-gap cell design, electrode material selection
- \cdot ~500 kJ mol⁻¹ regeneration

2022 - 2023

- 600 W regenerator
- 14 cfm gas with 4,000 ppm $CO₂$ contactor
- Negative Emissions. Integrated with point source capture (3-5% $CO₂$) as polisher
- Carbon polisher, 1700 kg yr^{-1} process
- H₂ production at 77 kg yr⁻¹

Journal of the Electrochemical Society 169 (4), 044527 ECS Advances 3 (2), 024501

Our publication
International Journal of Applied Ceramic Technology 20 (5), 3014-3026 US 11857914B2

2023-2026: DAC 3.0 Packing assisted cross-flow absorber and stacking solvent regenerator

Equipment Sketch for DE-FE0032255

Capturing kiloton of $CO₂$ year⁻¹ from air

Solvent regenerator:

• Bipolar plate

*Packing structure is not shown.

Project Goal Renewable powered DAC and H_2 production at PPL testing site

- The unit will be installed at the E.W. Brown Power Generation Plant affiliated with PPL Corporation.
- The unit will be powered by renewable energy coupled with battery energy storage, facilitating life cycle assessment.

Institute for Decarbonization and Energy Advancement

gineering

Institute for Decarbonization and Energy Advancement

Energy Advancement

Institute for Decarbonization and

Motivation of Tasks 2 and 3 in BP 1 Reduce energy needed for solvent regeneration

Catalytic Demister for carbon capture (Task 2)

- Due to the small partial pressure of CO_2 in air, CO_3^2 is the major product.
- Using a catalyst to promote HCO_3^- formation, therefore reducing the number of electrons (electricity) for H^+ production.

Catalytic electrode for solvent regeneration (Task 3)

Using a catalytic material to minimize overpotential of water electrolysis or gas evolution reactions.

Catalyst Development (Task 2) Experimental

- Conditions: 0.5 L min⁻¹ of air, 5 mM catalyst in 1 M K_2CO_3 for air capture, Vaisala $CO₂$ gas analyzer
- Measured: remaining $CO₂$ concentration
- Goal: calculate carbon capture rate

Institute for Decarbonization and Energy Advancement

Catalyst Development CO₂ capture performance

- BF₄ based and Cl based catalysts have been synthesized.
- CA mimic shows the enhanced carbon capture performance at high pH, due to its enhanced surface charge, facilitating CO_2 reacting with CO_3^2 to produce HCO_3^- .

Institute for Decarbonization and Energy Advancement

eering

Institute for Decarbonization and Energy Advancement

Energy Advancement

Institute for Decarbonization and

Catalyst Development Substantial increases in capture rate

• At 800 min, the rate without catalyst is almost diminished while the rate with catalyst is still measurable.

Catalyst Development Immobilization of non-soluble catalyst on demister

- Roughen surface of demister.
- Using water-soluble salt particles to induce surface pits on a demister through annealing, thereby establishing host sites for a catalyst.

Institute for Decarbonization and Energy Advancement

Institute for Decarbonization and Energy Advancement

Institute for Decarbonization and Energy Advancement

Catalyst Electrode Selection (Task 3) Experimental

Half-cell: 3-electrode cell, cycling voltammetry, 100 mV s⁻¹, 1 – 1.5 M K_2CO_3 Full-cell: 400 cm² plate cell, constant current charging, varied charging currents, up to 2-6 $M K⁺$.

Measured: current vs voltage

Goal: examine catalytic material stability under alkaline conditions

Catalyst Electrode Selection Catalytic electrode: DSA vs Pt-Ti

- Dimensional stable anode (DSA): a titanium mesh coated with Ir, Pt, etc
- Platinized titanium (Pt-Ti): a titanium mesh coated with Pt black.
- Both electrodes can catalyze gas evolution reactions.

https://www.denora.com/our-brands/DSA.html

https://www.denora.com/our-products/Anodes-for-Oxygen-Evolution/platinized-anodes.html

Catalyst Electrode Selection Catalytic effect in half-cell: DSA > Pt-Ti

• DSA exhibits a more robust current response compared to Pt-Ti, indicating a potentially faster kinetic for gas evolution reactions.

Institute for Decarbonization and Energy Advancement

neering

Catalyst Electrode Selection Operating voltage of a full cell: DSA < Pt-Ti

• DSA exhibits a lower voltage compared to Pt-Ti, consist with the results from the half-cell studies.

Institute for Decarbonization and Energy Advancement

Catalyst Electrode Selection Electrode stability: DAS > Pt-Ti

- Following a full-cell long-term test, half-cell tests for used anodes were repeated.
- DSA demonstrates greater electrochemical stability when it comes to gas evolution reactions.
- The decline in current behavior observed in Pt-Ti is attributed to the loss of the Pt catalytic layer.
- Select DSA as the catalytic electrode.

Preliminary Techno-Economic Analysis (Task 4) Impact of catalyst on DAC cost

*expected cost of the catalyst can range from 50.30 to 514 per tonne CO2

- The base case show the cost of carbon capture is \$281 tonne $CO₂$.
- Created 3 catalyst enhanced carbon capture scenarios at catalyst cost of \$14 tonne⁻¹.
- DAC cost with catalyst $>$ base case.
	- High cost of making catalyst
	- Reduction in $H₂$ production
- The use of catalyst reduce the power consumption of solvent regeneration.

Institute for Decarbonization and Energy Advancement

Community Benefits in BP 1

- We have students and interns working on the tasks of (1) catalyst immobilization and (2) classroom teaching materials of decarbonization.
	- Students have learned decarbonation technologies, e.g., point source carbon capture, DAC, and green hydrogen production.
- The teaching materials will be disseminated to the students at UKy college of engineering in the Fall semester 2024.

Work Plan in BP 2 (August 2024 – July 2025)

Task 5 in BP 2

- Step 0: polish P&ID and 3-D CAD design
	- Finalizing mass chart and equipment selection.
- Step 1: procurement, balance of plant, fabrication
	- $CO₂$ absorber and solvent regenerator
- Step 2: process monitoring and control
	- Sensors (pH, conductivity, etc), datalogger, etc
	- HAZOP study
- Step 3: startup and commissioning
	- Testing unit at UK-IDEA
- Step 4: integration with solar power

Lessons Learned

Carbon Capture

• The duration of droplet suspension time is a critical factor in achieving efficient CO_2 capture.

Solvent Regeneration

• The membrane seal, which prevents mixing between the catholyte and anolyte, is vital in the solvent regeneration process as it enables $CO₂$ recovery through pH swings.

neering

Summary

- We have developed 2 catalytic materials, **catalytic 3-D demister** and **stable catalytic electrode**, to reduce the energy consumption for solvent regeneration.
- Preliminary TEA indicates that the expense of capturing 1 ton of CO₂ may fall **below** \$300 when factoring in proceeds from H_2 sales (@ \$6/kg) and catalyst cost.

Acknowledgements

- **DOE-NETL**: Elliot Roth, Patricia Rawls, and Andrew Jones
- **EPRI**: Adam Berger and Kianna Marquez
- **PPL**: Aron Patrick, Chad Alkire, and Samuel Kelty
- **TotalEnergies**: Jeffrey Parkey and Phuc-Tien Thierry
- **UK-IDEA**: Jinwen Wang, Pom Kharel, Su Shi, Steve Summers, Matt Button, Priyabrata Biswal, Siza Chaudhary, Lisa Richburg, Moushumi Sarma; **Student and Intern**: Emily Liu, Jenna Roseman, Maya Rao, Jesse Okorafor, Emmanuel Ohiomuba, Siza Chaudhary, Patrick Adoba

Project Team and Division of Responsibility

H College of
A Engineering

