Negative-Emissions Enabled Direct Air Capture with Coupled Electro-Production of Hydrogen at a 5 kg-per-hour Scale (DE-FE0032255)

Xin Gao, Jesse Thompson, and Kunlei Liu Institute for Decarbonization and Energy Advancement at PPL R&D Center University of Kentucky August 5th, 2024

Project Overview

Project Title	Negative-Emissions Enabled Direct Air Capture with Coupled Electro-Production of Hydrogen at a 5 kg-per-hour Scale	
Award #	DE-FE0032255	
Project Goals	Develop an intensified and simplified DAC process at a TRL 5 scale that simultaneously produces H_2 to offset the process cost.	
Funding	DOE: \$2,999,681 Cost-Share: \$749,943	
Duration	08/1/2023 – 7/31/2026, 3 Budget Periods	
Project Participants	UKy, EPRI, PPL Corporation, and TotalEnergies	

Institute for Decarbonization and Energy Advancement

College of Engineering

Solvent-Based Technology Applied to DAC

Process Sketch for DE-FE0032255

 $CO_2 \text{ capture}$ $CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O$

Alkaline water electrolysis $2H_2O \rightarrow O_2 + 4H^+ + \text{electrons}$ $2H_2O + \text{electrons} \rightarrow H_2 + 2OH^-$

CO₂ release H⁺ + CO₃²⁻ → HCO₃⁻ H⁺ + HCO₃⁻ → CO₂ + H₂O

Solvent regeneration $K^+ + OH^- \rightarrow KOH$

Feature: producing H_2 for sale, offsetting DAC operating cost

History of DAC and H₂ Production Research

DAC 1.0, proof-of-concept

DAC 2.0, size up DAC 2.5, point-source integration

2020 - 2021

- 30 W regenerator
- 2 L min⁻¹ air contactor
- <1 kg yr⁻¹ CO₂ capture process
- <1 kg yr⁻¹ H₂ production
- · Standard operation and explored depolarized operation DE-FE0031962

Our publication

2021 - 2023

- 210 W regenerator
- 10 cfm air contactor
- 200 kg yr⁻¹ CO₂ capture
- 10 kg yr⁻¹ H₂
- · Zero-gap cell design, electrode material selection
- ~500 kJ mol⁻¹ regeneration

energy DE-FE0032125

2022 - 2023

- 600 W regenerator
- 14 cfm gas with 4,000 ppm CO₂ contactor
- Negative Emissions, Integrated with point source capture (3-5% CO₂) as polisher
- Carbon polisher, 1700 kg yr⁻¹ process
- H₂ production at 77 kg yr⁻¹

Journal of the Electrochemical Society 169 (4), 044527 ECS Advances 3 (2), 024501

International Journal of Applied Ceramic Technology 20 (5), 3014-3026 US 11857914B2

2023-2026: DAC 3.0 Packing assisted cross-flow absorber and stacking solvent regenerator

Equipment Sketch for DE-FE0032255

Capturing kiloton of CO₂ year⁻¹ from air

Solvent regenerator:

• Bipolar plate

*Packing structure is not shown.

Project Goal Renewable powered DAC and H₂ production at PPL testing site

- The unit will be installed at the E.W. Brown Power Generation Plant affiliated with PPL Corporation.
- The unit will be powered by renewable energy coupled with battery energy storage, facilitating life cycle assessment.

Institute for Decarbonization and Energy Advancement

ngineering

Motivation of Tasks 2 and 3 in BP 1 Reduce energy needed for solvent regeneration

Catalytic Demister for carbon capture (Task 2)

- Due to the small partial pressure of CO_2 in air, CO_3^{2-} is the major product.
- Using a catalyst to promote HCO₃⁻ formation, therefore reducing the number of electrons (electricity) for H⁺ production.

Catalytic electrode for solvent regeneration (Task 3)

• Using a catalytic material to minimize overpotential of water electrolysis or gas evolution reactions.

Institute for Decarbonization and Energy Advancement

gineering

Catalyst Development (Task 2) Experimental

- Conditions: 0.5 L min⁻¹ of air, 5 mM catalyst in 1 M K_2CO_3 for air capture, Vaisala CO_2 gas analyzer
- Measured: remaining CO₂ concentration
- Goal: calculate carbon capture rate

Institute for Decarbonization and Energy Advancement

gineering

Catalyst Development CO₂ capture performance

- BF_4^- based and Cl^- based catalysts have been synthesized.
- CA mimic shows the enhanced carbon capture performance at high pH, due to its enhanced surface charge, facilitating CO_2 reacting with CO_3^{2-} to produce HCO_3^{-} .

Institute for Decarbonization and Energy Advancement

eering

Catalyst Development Substantial increases in capture rate

• At 800 min, the rate without catalyst is almost diminished while the rate with catalyst is still measurable.

Catalyst Development Immobilization of non-soluble catalyst on demister

- Roughen surface of demister.
- Using water-soluble salt particles to induce surface pits on a demister through annealing, thereby establishing host sites for a catalyst.

Institute for Decarbonization and Energy Advancement

Igineering

Institute for Decarbonization and Energy Advancement

Catalyst Electrode Selection (Task 3) Experimental

Half-cell: 3-electrode cell, cycling voltammetry, 100 mV s⁻¹, 1 - 1.5 M K₂CO₃ Full-cell: 400 cm² plate cell, constant current charging, varied charging currents, up to 2-6 M K⁺.

Measured: current vs voltage

Goal: examine catalytic material stability under alkaline conditions

Catalyst Electrode Selection Catalytic electrode: DSA vs Pt-Ti

- Dimensional stable anode (DSA): a titanium mesh coated with Ir, Pt, etc
- Platinized titanium (Pt-Ti): a titanium mesh coated with Pt black.
- Both electrodes can catalyze gas evolution reactions.

https://www.denora.com/our-brands/DSA.html

https://www.denora.com/our-products/Anodes-for-Oxygen-Evolution/platinized-anodes.html

Catalyst Electrode Selection Catalytic effect in half-cell: DSA > Pt-Ti

• DSA exhibits a more robust current response compared to Pt-Ti, indicating a potentially faster kinetic for gas evolution reactions.

Institute for Decarbonization and Energy Advancement

neering

Catalyst Electrode Selection Operating voltage of a full cell: DSA < Pt-Ti

• DSA exhibits a lower voltage compared to Pt-Ti, consist with the results from the half-cell studies.

Institute for Decarbonization and Energy Advancement

gineering

Catalyst Electrode Selection Electrode stability: DAS > Pt-Ti

- Following a full-cell long-term test, half-cell tests for used anodes were repeated.
- DSA demonstrates greater electrochemical stability when it comes to gas evolution reactions.
- The decline in current behavior observed in Pt-Ti is attributed to the loss of the Pt catalytic layer.
- Select DSA as the catalytic electrode.

gineering

Preliminary Techno-Economic Analysis (Task 4) Impact of catalyst on DAC cost

(\mathbf{a})	Cost of Capture, \$/tonne CO2					
Component	14X Scale (49,000 tpy)					
Component	Base Case	11% Enhanced	21% Enhanced	30% Enhanced		
Capital	212	203	199	194		
Fixed	80	80	80	80		
Variable	32	32	32	32		
Electricity	345	315	297	282		
Catalyst	0	14*	14*	14*		
Subtotal	669	644	622	602		
CO2 T&S	14	14	14	14		
H2 Sales Value (\$6/kg)	-402	-367	-347	-329		
Total	281	291	289	287		

*expected cost of the catalyst can range from \$0.30 to \$14 per tonne CO2

(b)		Catalyst Enhancement Scenario				
		Base Case	se Case 11% Enhanced 21%		30% Enhanced	
Solvent Molar Concer	trations					
КОН	mol/L	0.11	1.77E-03	7.96E-04	4.88E-04	
K2CO3	mol/L	1.44	1.41	1.32	1.23	
КНСОЗ	mol/L	4.24E-03	0.17	0.35	0.54	
CO2(aq)	mol/L	1.30E-09	2.17E-06	9.97E-06	2.48E-05	
Product Molar Flow R	ates					
CO2(g)	kg/hr	470	470	470	470	
H2(g)	kg/hr	31	29	27	26	
CO2 Purity into CO2 P	urificatio	n Unit				
CO2(g)	mol %	62	64	65	66	
O2 Balance, Dry Basis	kg/hr	214	195	184	175	
Performance Specific	ations					
ER Power Required	kW	1,717	1,567	1,481	1,404	
Power Reduction	%	-	8.74	13.77	18.27	
H2 Output Reduction	%	-	8.74	13.77	18.27	

- The base case show the cost of carbon capture is \$281 tonne CO_2 .
- Created 3 catalyst enhanced carbon capture scenarios at catalyst cost of \$14 tonne⁻¹.
- DAC cost with catalyst > base case.
 - High cost of making catalyst
 - Reduction in H₂ production
- The use of catalyst reduce the power consumption of solvent regeneration.

Institute for Decarbonization and Energy Advancement

ineering

Community Benefits in BP 1

- We have students and interns working on the tasks of (1) catalyst immobilization and (2) classroom teaching materials of decarbonization.
 - Students have learned decarbonation technologies, e.g., point source carbon capture, DAC, and green hydrogen production.
- The teaching materials will be disseminated to the students at UKy college of engineering in the Fall semester 2024.

Activity	Metrics and Data
Recruit student(s), BP1	• 1 student recruited to participate in project
Collaboratewithcommunitystakeholders todevelopeducationalcontent, BP2	• 2 topics to be in the course materials.
Provide access to developed content, including online posting, classroom instruction, and/or outreaches, BP3	 2 topics developed for instructional purposes will be shared on the UK-IDEA website At least 1 presentation from a recruited student

Institute for Decarbonization and Energy Advancement

ngineering

Work Plan in BP 2 (August 2024 – July 2025)

Task 5 in BP 2

- Step 0: polish P&ID and 3-D CAD design
 - Finalizing mass chart and equipment selection.
- Step 1: procurement, balance of plant, fabrication
 - CO₂ absorber and solvent regenerator
- Step 2: process monitoring and control
 - Sensors (pH, conductivity, etc), datalogger, etc
 - HAZOP study
- Step 3: startup and commissioning
 - Testing unit at UK-IDEA
- Step 4: integration with solar power

Lessons Learned

Carbon Capture

• The duration of droplet suspension time is a critical factor in achieving efficient CO_2 capture.

Solvent Regeneration

• The membrane seal, which prevents mixing between the catholyte and anolyte, is vital in the solvent regeneration process as it enables CO_2 recovery through pH swings.

neering

Summary

- We have developed 2 catalytic materials, **catalytic 3-D demister** and **stable catalytic electrode**, to reduce the energy consumption for solvent regeneration.
- Preliminary TEA indicates that the expense of capturing 1 ton of CO₂ may fall **below \$300** when factoring in proceeds from H₂ sales (@ \$6/kg) and catalyst cost.

Bun

Institute for Decarbonization and

Energy Advancement

Acknowledgements

- DOE-NETL: Elliot Roth, Patricia Rawls, and Andrew Jones
- EPRI: Adam Berger and Kianna Marquez
- PPL: Aron Patrick, Chad Alkire, and Samuel Kelty
- TotalEnergies: Jeffrey Parkey and Phuc-Tien Thierry
- UK-IDEA: Jinwen Wang, Pom Kharel, Su Shi, Steve Summers, Matt Button, Priyabrata Biswal, Siza Chaudhary, Lisa Richburg, Moushumi Sarma; **Student and Intern**: Emily Liu, Jenna Roseman, Maya Rao, Jesse Okorafor, Emmanuel Ohiomuba, Siza Chaudhary, Patrick Adoba

Project Team and Division of Responsibility

Eng	Collo
ginee	lege
erir	of
λά	

	PLAN	PLAN	
TASK DESCRIPTION	START	END	
1 Project Management and Planning	8/1/2023	7/31/2026	
1.1 1A. Update Project Management Plan	8/1/2023	8/31/2023	
1.1 1B. Kickoff Meeting	8/1/2023	10/31/2023	
1.2 2A. Initial Technology Maturation Plan	8/1/2023	10/31/2023	
1.2 28. Final Technology Maturation Plan	1/1/2025	4/2/2026	
BP1 BP1: Design and Development	8/1/2023	7/31/2024	
2 DAC Hybrid Absorber Development			
	8/1/2023	3/31/2024	
2.1 CA Mimics Development	8/1/2023	10/31/2023	
2.2 Catalyst Immobilization	11/1/2023	3/31/2024	
2.3 Hybrid Absorber Design	1/1/2024	3/31/2024	
2.4 Fabrication and Testing of Absorber Components	3/1/2024	7/30/2024	
3 Electrochemical Regenerator R&D	8/1/2023	5/1/2024	
3.1 Commercial Electrode Selection	8/1/2023	12/31/2023	
3.2 Stability of ERC	12/1/2023	5/1/2024	
4 Recruitment, Initial Analysis and Design Package	8/1/2023	7/31/2024	
4.1 Student Recruiment and Mentoring	8/1/2023	7/31/2024	
4.2 Process Design Package	10/1/2023	3/29/2024	
4.2 Initial Technoeconomic Analysis	8/1/2023	11/29/2023	
4.3 Initial Life Cycle Analysis	8/1/2023	11/29/2023	
BP2 BP2 Scale up, System Integration and Modulation	8/1/2024	7/31/2025	
5.1 Procurement and Balance of Plant	8/1/2024	11/1/2024	
5.2 Process Control and Monitoring and P&ID	10/2/2024	2/2/2025	
5.3 Integration with Solar Energy Park	2/2/2025	5/2/2025	
5.4 Startup and Comissioning	3/3/2025	7/28/2025	
BP3 BP3: Parametric, Long-Term, and Technology Analyses	8/1/2025	7/31/2026	
6.1 Parametric Testing	8/1/2025	2/1/2026	
6.2 Long Term Testing and Analysis	12/1/2025	7/31/2026	
7.1 Final Technoeconomic Analysis	11/3/2025	5/2/2026	
8.1 Life Cycle Analysis	11/3/2025	5/2/2026	
9.1 EH&S Assessment	11/3/2025	5/2/2026	
10.1 Technology Gap Analysis	11/3/2025	5/2/2026	