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Project Overview

Award Number: DE-FE0032251

Principal Investigator: Jonathan Bachman, Ph.D.

Project Period: 10/1/2023–9/30/2026

Funding: $2,999,642 Federal, $749,907 Cost Share

Key Participants: SRI International

Project Objectives: 

• Optimize the structured adsorbent, contactor, and DAC system operation for improved volumetric 

productivity, pressure drop, and capacity fade towards the general target DAC cost of < $100/ton CO2e.

• Identify a low-cost, scalable manufacturing method for structured adsorbent production. 

• Develop a laboratory-scale DAC system with a continuous production rate of > 1 kg CO2/day at a purity 

of > 90% CO2, demonstrating < 0.005% / cycle capacity fade over 1,000 h of operation.
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Project History

Project Location: Palo Alto, CA at the PARC campus of SRI International.

Project History: follows-up on previous work accomplished in DE-FE0031951 (Tunable, Rapid-

Uptake Aminopolymers for Direct Air Capture of CO2) and builds on a history of research on 

polymer resins at PARC, dating back to development of printer inks with Xerox. 

Impact on DOE goals: Sorbent performance effects every aspect of the technoeconomics of direct 

air capture and next-generation materials are needed to achieve DOEs’ $100/ton CO2e goal.
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Project Scope

High Level Execution Plan: 

• Conduct structured adsorbent testing, contactor fabrication, and system design.

• Commission bench-scale DAC system and conduct preliminary cycle testing.

• Optimize and conduct long-term cycling on bench-scale DAC system.

Key Milestones/Success Criteria:

• Develop a structured adsorbent with > 1.35 mmol CO2/g equilibrium capacity and > 0.087 mmol 

CO2/gsorbent/min adsorption rate.

• Construct a 1 kg CO2/day bench-scale DAC system that continuously produces CO2 from air with > 90% purity.

• Demonstrate > 1,000 h of continuous cyclic operation with < 0.005%/cycle capacity fade.

High Probability Risk & Mitigations:

• Risk: Poor liquid water stability causes pore collapse, reducing sorbent performance.

• Mitigation: Instead of using direct steam for regeneration, use a 2-fluid contactor design with indirect heating.
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Background: Amine Polymer Resin Adsorbent

• Low MW (43.07 g/mol) vinylamine segments provide a high density of amine sites and DVB provides 

mesoporosity in the polymer resin. 

• Amine efficiency increases from 1:2 to 1:1 CO2:amine in the presence of water.
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Background: Structure-Property Relationships

• Increasing amine content increases CO2 adsorption and amine efficiency

• Inverse correlation between CO2 adsorption and surface area (but nonporous samples have no 
CO2 adsorption)
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Project Milestones for Budget Period 1

Task/ 

Subtask
Milestone Title & Description Status

2 M2: Outreach opportunity pursued. Complete

3 D3: Submit initial technoeconomic analysis. Complete

4 D4: Submit initial life cycle analysis. Complete

5.1 M5.1.1: Structured adsorbent thickness control demonstrated. Complete

5.1 M5.1.2: Accelerated oxidative aging testing completed. Complete

5.1 M5.1.3: Liquid water stability determined. Complete

5.2 M5.2.1: Target equilibrium capacity achieved for the structured adsorbent. Complete

5.2 M5.2.2: Target adsorption rate achieved for the structured adsorbent. Complete

5.2 M5.2.3: Baseline pressure drop determined. Complete

5.2 M5.2.4: Baseline volumetric productivity determined. Complete

5.3 M5.3: Initial design of DAC system completed. Complete
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Initial Technoeconomic Analysis

D3: Submit initial technoeconomic analysis.

Cost category Contribution to capture cost Percentage of capture cost

Capital expenditure $45/t CO2e 28%

Direct sorbent cost $7/t CO2e 4%

Other OPEX $45/t CO2e 28%

Utilities cost $65/t CO2e 40%

Energy category Energy requirement Percentage of energy

Blower fan 0.49 GJ/t CO2e 6%

Vacuum pump 0.63 GJ/t CO2e 8%

Heating 7.04 GJ/t CO2e 86%

Performance category Performance value

Nominal plant lifetime capture 20,000,000 ton CO2

Energy-based emissions generated 2,080,800 ton CO2

Net CO2 captured 17,919,000 ton CO2e

• The initial TEA resulted in an estimated total cost of capture of 

$162/t CO2e, with an annual operating cost of $145,490,000 and 

a fixed capital investment requirement of $403,200,000. 

Summary of Cost Breakout

Summary of Energy Breakout

DAC Facility Lifetime Performance
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Adsorbent Structuring Approaches

In-situ polymerization for free-standing structured adsorbents:

• Manufacturing techniques from ion exchange membrane production are applied due 

to similarities in polymer chemistry.

• Free-standing structured sheets are produced in the first step of manufacturing.

• Thickness of the structured adsorbent can be controlled by changing the thickness 

and areal density of the nonwoven substrate.
• Substrates with weights of 20, 25, 30, and 40 g/m2 were used to produce structured 

adsorbents with thicknesses of 165(7), 235(10), 286(26), and 447(43) µm, 

respectively.

M5.1.1: Structured adsorbent thickness control demonstrated. 

Description: Structured adsorbents of ≥ 3 varying thickness (100 micrometers – 600 micrometers) fabricated. 
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Oxidative Degradation

M5.1.2: Accelerated oxidative aging testing completed. 

Description: Oxidative stability evaluated by thermogravimetric analysis (TGA). Degradation rate (% capacity/min) measured 

vs. oxygen concentration (0% – 21% O2) and oxidation temperature (80 – 100 ˚C). Identify a vacuum pressure and temperature 

that would result in an oxidative degradation rate of < 0.005% / cycle. 

• At 100 ˚C regeneration, depending on desorption time, a total vacuum pressure of 0.15-0.25 bar would result in 

a degradation rate of < 0.005 %/min.
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Liquid Water Stability

M5.1.3: Liquid water stability determined.

Description: Equilibrium CO2 adsorption capacity measured before and after water exposure. ≥ 3 water-to-sorbent ratios and 

≥ 3 exposure times tested. Based on the results, an S-TVSD or VTSA DAC process chosen.
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• Drying from liquid water causes pore collapse, creating domains within the polymer that trap liquid water; 

bulk density dramatically increases. 

• Indirect heating (i.e., a VTSA) process is required to maintain sorbent functionality.
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Optimizing Structured Adsorbent Synthesis

M5.2.1: Target equilibrium capacity achieved for the structured adsorbent. 

Description: Equilibrium adsorption capacity of 1.35-2.7 mmol CO2/g achieved under 0-75% RH under ambient air conditions 

measured on the structured adsorbent. 

• Equilibrium capacity of 1.36 mmol CO2/gsorbent under 0% 

relative humidity, and 25 ˚C, and 420 ppm CO2 was 

achieved.

• Increasing both functional monomer content and solvent 
content during polymerization results in structured 

adsorbents with high equilibrium capacity.

• The structured adsorbent comprised 80 wt.% of active 

material – the normalized equilibrium capacity is 1.7 
mmol CO2/gsorbent. 0
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Adsorption Kinetics
M5.2.2: Target adsorption rate achieved for the structured adsorbent.

Description: Adsorption rate of > 0.087 mmol CO2/g/min under 0% RH and ambient air conditions measured via breakthrough 

testing on the structured adsorbent.

Air flow

H2O

CO2

• Adsorption is studied at variable air flow rates; flow-limited transport indicates that internal diffusion is not limiting.

• Initial CO2 and H2O adsorption rates as high as 0.26 and 9.0 mmol/g/min, correspond to the species feed rates.
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Pressure Drop
M5.2.3: Baseline pressure drop determined.

Description: Pressure drop as a function of air flow channel dimension and air flow rate determined by computational fluid 

dynamics. Pressure drop measured and compared with simulated values for ≥ 1 air flow channel dimension and ≥ 3 flow 

rates. Baseline air flow channel dimension and air flow rate established. 

• Pressure drop measurements were conducted for 3 flow channel dimensions (0.5, 0.79, and 1.0 mm) at 

a range of flow rates between 500 and 8,000 sccm.

• Results indicate that a baseline pressure drop of < 400 Pa is achieved.
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Volumetric Productivity
M5.2.4: Baseline volumetric productivity determined.

Description: The measured adsorption rate from M5.1.2, baseline air flow channel dimension from M5.2.3, and measured 

structured adsorbent density used to determine a baseline volumetric productivity. Cycle time determined based on optimized 

adsorption time and predicted desorption time.
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• A baseline volumetric productivity of 0.71 ton CO2/m
3/day was established, based on contactor geometry 

and sorbent properties.
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Bench-scale DAC System Design

M5.3: Initial design of DAC system completed.

Description: Initial design of the DAC system to produce > 1 kg CO2/day at > 90% purity established. Process flow diagram 

and initial unit operation specifications established. Initial P&ID established along with overview of process controls to be  

implemented.

Initial P&ID of Bench-Scale System Bench-Scale Air Contactor

• Vacuum-temperature swing adsorption (VTSA) system using indirect heating via cycling hot and cold water.
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Community Benefits Plan

M2: Outreach opportunity pursued.

Description: At least one outreach opportunities pursued (e.g., giving a seminar at a local community college, 

attending/hosting recruitment events at a minority serving institution, etc.). 

• Outreach opportunities will be pursued (e.g., giving a seminar at a local community college, 
attending/hosting recruitment events at a minority serving institution, etc.) at least once per year.

• In May, the Student Chapter of the American Institute of Chemical Engineers at San Jose State 
University invited me to give a seminar.

• The focus of the event was on opportunities for ChemE’s in clean energy careers, with a focus 
on carbon dioxide removal.

• Feedback was positive with students being surprisingly engaged in the research aspects – many 
were conducting undergraduate research on related fields.

• In the 2024-2025 school year, I hope to further engage with undergraduates at SJSU about 
opportunities in clean energy and CDR. 
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Learnings & Next Steps

• Structured adsorbent synthesis for contactor assembly

• Single contactor optimization

• Large-scale structured adsorbent manufacturing design

• Bench-scale DAC system integration

• Initial cycle testing on bench-scale DAC system


	Slide 1: Aerogel Adsorbent Polymers for Direct Air Capture of CO2
	Slide 2: Project Overview
	Slide 3: Project History
	Slide 4: Project Scope
	Slide 5: Background: Amine Polymer Resin Adsorbent
	Slide 6: Background: Structure-Property Relationships
	Slide 7: Project Milestones for Budget Period 1
	Slide 8: Initial Technoeconomic Analysis
	Slide 9: Adsorbent Structuring Approaches
	Slide 10: Oxidative Degradation
	Slide 11: Liquid Water Stability
	Slide 12: Optimizing Structured Adsorbent Synthesis
	Slide 13: Adsorption Kinetics
	Slide 14: Pressure Drop
	Slide 15: Volumetric Productivity
	Slide 16: Bench-scale DAC System Design
	Slide 17: Community Benefits Plan
	Slide 18: Learnings & Next Steps

