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• To design and construct an engineered sorbent structure for 
capturing CO2 from ambient air via a rapid temperature swing 
adsorption (RTSA)

• Unit cell will be a 3D printed monolith with integrated heating 
• Low pressure drop
• Enhanced heat transfer to ensure high CO2 productivity in the 

TSA cycle (kg CO2 removed per kg sorbent per unit time)
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Project Duration

• Start Date = September 2023

• End Date = March 2027

Budget

• Project Cost = $3,749,956

• DOE Share = $2,999,956

• TDA & partners = $750,000

BP Period Main Activity
1 Year 1 Preparation of Small Test Articles

Optimization of Paste Properties
Screening Tests

2 Year 2 Preparation of Larger Test Articles
Large scale Evaluations
Long-term Cycling

3 Year 3 Module Design
Techno-economic Assessment 
Life Cycle Analysis

Project Team and Objectives
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Introduction

• Sorbent-based DAC systems have to 
address two key challenges that stem from 
the low concentration (400-500 ppmv) of 
CO2 in air:
• Need to circulate large volumes of air
• A rapid cycle sequence that increases 

the CO2 productivity (ton CO2 removed 
per ton sorbent per hr)  

A fixed pressure drop is assumed in all contactors

• A cost-effective gas-solid contactor must 
achieve a low pressure drop

• An effective heat integration/management 
system is needed to ensure a rapid cycle to 
reduce the sorbent inventory

Energy Penalty for Moving Air



Approach
• A new gas-solid contactor is designed based on 3D printed monoliths where the entire monolith is 

made out of the reactive phase
• Low pressure drop due to the presence of open flow channels
• High active material loading (high volumetric capacity)
• Possibility to integrate electric heaters using conductive paste to allow rapid heating 
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Active Phase

Inert Support

Conventional Monoliths TDA’s Monolith
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TDA’s Sorbent for DAC
• TDA has been developing a new polymer sorbent for DAC and life support applications (DE-SC-00020846, 

80NSSC18C0135, N00178-18-C-8009)

• Sorbent has very high CO2 uptake in dilute gas streams (e.g., 400 ppm CO2 in air; 2,500 ppm 
spacecraft cabin; up to 5,000 ppm in submarines)

• The sorbent maintains its stability at high temperatures 

• The sorbent can be prepared in the form of pellets, laminates and 3D printed monoliths; in this project it 
will be applied as a 3D printed monolith

Various forms of polymer sorbent: (a) powder (b) pellets (c) single laminate layer (d) 3D printed monolith 
(e) applied as a coating on HEX surfaces

(a) (b) (c) (d) (e)
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Temperature & Cyclic Stability

• High stability under TSA/VTSA cycling 
• High working capacity 

• ~3% wt. CO2 uptake at a 60oC swing 
• Stable operation for ~800 cycles under DAC conditions (over 10,000 cycles has been demonstrated for 

the Navy application)

Breakthrough

Saturation4% CO2 

Inlet
518 ppm 

CO2 Inlet
518 ppm CO2 Inlet

Adsorption = 30oC

Regeneration = 90oC
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High Temperature Oxidative Stability

A

B

E

D

C

Aged in air at 120°C 
for 24hrs A B C D E

Aged at 120°C 
for 24 hours

• TDA identified several formulations that can provide high temperature oxidative stability
• An aggressive test method is developed to accelerate aging effects in air for 24 h at 120°C under dry 

conditions
• CO2 uptake performance is tested before and after the aging test in a 5 min concentration                   

swing cycle at 60°C

Benchmark 
Material 



3-D Printing Process
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Paste 3D Printer 
• Liquid Deposition Modeling
• 1.6mm nozzle diameter
• Screw extrusion
• 10 x 10 x 10” build volume

Printing

Custom Drying Chamber
• Adjustable top vent 
• Controlled and repeatable 

drying rate
• Removable cover

Drying

Low-Speed Lathe
• Sanding grips to hold the dried 

monolith, clamped to the lathe
• Shape, dimension, and surface 

roughness is controlled

Post Processing (Sanding)



3D Printed Sorbent Samples

• Critical parameters (for mechanical strength) 
include binder type and composition, paste 
rheology, printing rate and drying conditions

Early 

Preparations

Recent 

Preparations



3D Printed Sorbent – Evaluation in the TGA
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• 5/5 min cycles (kinetic regime) showed ~10% 
reduction in CO2 uptake while 15/15 min cycles 
(saturation) resulted in 18% reduction

• Binder acts as a diluent but did not degrade the 
amine

• Binder enables better dispersion of the active 
phase which led to the improved performance 
during short cycle time tests

• Stability was intact through the 60-cycle test  

3D Printed Sorbent
CO2 Uptake

CO2 Uptake wt.%

60°C 80°C 100°C 60°C

Cycled in 4% CO2/4%O2/N2 AND N2 15/15 min 5/5 min 15/15 min 5/5 min 15/15 min 5/5 min 5/5 min

3D Print Monolith Section 5.74 5.38 2.00 2.05 0.52 0.62 5.46

Baseline Sorbent 6.94 4.94 2.90 2.94 0.78 0.77 5.11

TDA Standard 60-cycle Test



Bench Scale Sorbent Module for CO2 Uptake
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Bench Scale Test Cell
• ~100 mL Volume
• 2" x Ø1.87" Tri-clamp Spool
• Monolith Diameter: 43.8 mm, Height: 40-90 

mm, Channel spacing 4 mm
• Non-porous polymer tape around the monolith 

to prevent gas channeling

Bench Scale Test System
• Electronic mass flow controllers to introduce 

air, N2, O2

• Water is introduced using a sparger
• Thermal swing and thermal/vacuum swing 

simulations
• Automated operation



Adsorption Regeneration

Bench Scale Test Results (Preliminary)
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Test Conditions:
Adsorption - 0.5 slpm, 500 ppm inlet CO2, 35% rH, 12.2 psia, RTºC
Desorption - 0.5 slpm N2, dry, 12.2 psia, 90ºC



3D Printed DAC Printing Geometries
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Advanced channel configurations could allow 
better flow distribution

Staggered Channel Configuration

Straight Channel Configuration

T= 35oC, 2,500 ppm CO2 in air

Gyroid InfillStandard Rectilinear Repeating Circles



Heat Transfer Improvements
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• Thermally conductive pastes may 
be used to improve the heat 
transfer rate

• These can be directly mixed with 
the active phase or can be printed 
in alternating layers using the 
dual-head printer

• Thermally conductive paste will be 
in direct contact with the heating 
elements that allows rapid heating 

• Safe electrification of the DAC 
module/process

Integrated thermal conductive layersGraphite/sorbent mixture

Wire 
heaters

Wire heatersConductive paste potting



System Design
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Shipping Container Modules (40' x 8' x 8.5’)
• 1 ft x 3 or 6 ft Sorbent Cube Cell to form a sub-module
• Multiple Sub-modules per Shipping Container



Future Work
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Task 1. Project Management
Budget Period 1
Task 2.  Preparation of Sorbent Material
Task 3.  Preparation of Structured Sorbents
Task 4.  Evaluation of Test Articles
Task 5.  Design of the Sorbent Module
Task 6.  Initial Techno-Economic Analysis
Budget Period 2
Task 7.  Preparation of Larger 3D Structures
Task 8.  Fabrication of the Test Unit  
Task 9.  Multiple Cycle Testing
Task 10.  Process Simulation/Optimization
Budget Period 3
Task 11.  Evaluation at Structured Sorbent
Task 12.  Process Simulation/Sensitivity Analysis
Task 13.  Final TEA
Task 14.  EH&S, TGA and TMP

Double-headed 3D printer 
Mendel 2.0

4” x 8” 3D printed 
ceramic monolith
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