Green Methanol via an Integrated Direct Air Capture, CO2 Electrolyzer, and Hydrogenation Reactor

Project Number: FE0032415

Thomas Zawodzinski and Ramez Elgammal

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Overview

- Funding: DOE (\$399,999); Cost-share (\$100,002)
- Project Performance Dates: 12/20/2023 9/19/2024
- Overall Project Objectives: Advance the TRL through experimental and modeling to enhance the efficiencies while assessing the TEA/LCA of an integrated reactor for simultaneous capture and conversion of $CO₂$ to methanol.

Project Participants

Thomas Zawodzinski Project PI CB/SCI

Ramez Elgammal (Co-PI) CO₂ Electrolyzer, TEA/LCA

Colt Griffith Hydrogenation Modeling

Aye Meyer DAC Modeling

Josh Pihl Hydrogenation¹ **Catalysis**

Ryan Lively

Advisors

Stafford Sheehan

Karen Swider-Lyons

Technology Background

- Key innovation: $CO₂$ electrolyzer
	- o Low overpotential w/ large current densities, high efficiency, and selectivity
	- Overcomes challenges with competing CO₂ electrolyzers such as water **management and membrane durability**
- **Deta Components of integrated** reactor use "off-the-shelf" mature technologies – derisks approach
	- DAC based on ORNL/Holocene
	- \circ PEM electrolyzer for H₂ source
	- Hydrogenation catalyst well understood

System Overview

- Targets for 1000 tons of MeOH per year
	- \sim Controlled CO₂ feed from DAC with $RH \sim 3\%$
	- $CO₂$ electrolyzer < 50 m² and 600 mA/cm2
	- Methanol synthesis $@$ 50 bar with gains in yield from counter-current stripping with wet H_2

Advantages and Challenges

- CO₂ fed into GDE: **No solubility limits**
- CDP provides a > 10x cost savings over competing polymer membranes
- Cathode catalyst is simple and inexpensive mixed metal oxide
- HOR more compatible with the cathodic CO₂RR: more balanced and integrated
electrolysis process
- Lower energy consumption: Using separate electrolyzer for H₂ generation
reduces h's (HER vs OER)
- Eliminates need to manage and control the complex and often harsh conditions required for OER, simplifying the reaction setup and maintenance
- Cathode catalyst durability: corrosion resistant supports will need further investigation
- Scale-up of MEAs: Some work has been done to try roll-to-roll processing of CDPbased materials previously, but R&D efforts are needed
- Integrated reactor thermodynamics and efficiencies need to be demonstrated

Technical Approach

- Selection of DAC system: Thermodynamics and cost considerations of DAC and integration and sizing into reactor is critical —Modeling of competing systems using ASPEN
- Optimization of $CO₂$ electrolyzer
	- —Electrode structure and catalyst dispersion greatly impacts performance
	- —Multi-physics modeling of scaled-up electrolyzer
- Evaluation of CO-to-methanol reactor
	- —Modeling using ASPEN
- Culminating in System Model

Project Scope and Milestones

- Risk mitigation
	- —Initial DAC system was identified but kept agnostic to allow for evaluation of competing technologies
	- —Catalyst support and fabrication had adequate parameter space to allow for systematic investigation and optimization
- Scope: Limited experimental investigations with modeling driving design of integrated reactor
- Milestones
	- —Electrolyzer Q2 performance target met
	- —DAC Q3 performance target met
	- —Working towards integrated reactor design and DEI/CB Q4 targets

DAC Evaluation

Energy for the catalyst regeneration is one of the cost and GHG emissions drivers

• The amino acid solvent system is being scaled up at ORNL (up to 3 kg $CO₂$ per day and scaled up to 10 metric tons $CO₂$ per year by Holocene.

DAC System – Conceptual Model & Simulation

- Solvent deactivation rate (replacement rate) significantly impacts emissions
- Possible net-negative emissions when deactivation rate < 1%.

DAC Pilot Scale at ORNL

- \cdot 1 ft³ wind tunnel prototype
- Cross-flow operation: —Solvent – top-to-bottom

—Air – Left-to-right

• Updated version has 3 packing elements Stacked to give 3 ft³

Innovations in CO₂ Electrolysis

- Current commercial CO₂ electrolyzers (Twelve, Dioxide Materials) use Ag-based catalysts and typically generate CO at 300-600 mA/cm²
	- —**Our electrolyzer can produce CO with FE > 98% at over 750 mA/cm2**
	- —**Our cathode catalyst uses inexpensive metal oxides**
- Current commercial CO₂ electrolyzers use either PEM or AEM polymer membranes which are expensive and require sophisticated water management, risks of electrode flooding, and chemical instability is an issue
	- —**At scale, we believe our CDP "membrane" can be > 100x less expensive**
	- —**Humidification of our electrolyzer is operationally simple and requires ~ 3% RH**
	- —**TEA suggests that CapEx and OpEx costs can be lowered by 4-6x and ~ 2x over competing technologies**

Improved CO₂ Electrolyzer: Nanocomposite Cathodes

• Experimental efforts addressed electrode porosity, catalyst dispersion, and nano-templating of CDP electrolyte

Methods to Increase Performance

Scale-Up of CO₂ Electrolyzer

- Materials evaluation at 1.5 cm² scaled to 15 cm²
- Future: Stacks w/ 50 or 125 cm2 – Flow field design
- **Aluminum and stainless steel hardware and polymer seals**

COMSOL Modeling of Electrolyzer

- **Lab-scale model used "dead-end" flow fields**
- **Serpentine flow fields necessary for scaled up reactor**
- **At low-flow rates, HER competition increases – sets balance of per-pass CO₂ conversion efficiency, utilization, and FE**
- **Other flow fields and 3D models are being constructed**

• **Addressing issues related to mass-transport efficiencies and homogeneous reactivity across electrode structure**

ASPEN/HYSYS Model of Hydrogenation

• Model accounts for CO production from electrolyzer

Summary of Carbon Negative MeOH Production

Technical Lessons Learned

- Initial solid-state DAC was not the most suitable system for our needs —Integrated reactor will adopt amino acid system
- As $CO₂$ utilization increases, FE tends to decrease due to mass transport limitations and incomplete $CO₂$ consumption
	- $-$ Spatial variations in FE due to differences in $CO₂$ availability across the catalyst
	- —Varying inlet $CO₂$ flow rates showed that higher flow rates maintain high FE but lower $CO₂$ utilization, whereas lower flow rates increase $CO₂$ utilization but decrease faradaic efficiency due to the formation of H_2 instead of CO
	- —Flow field can mitigate mass transport limitations and improve performance
- Electrode morphology is critical

Community Benefits Plan (CBP) Overview

Overarching intention of the CBP: in this CBP, we present an integrated approach to assessing the impacts of the technology on jobs, environment and community perceptions by:

- (i) Engaging university-based communities (including an HBCU and an MSI) in dialogue about a proposed plant.
- (ii) Identifying potentially impacted localities and populations and the specific impacts expected.
- (iii) Engaging representatives of underserved universities in the scientific work of the project.
- (iv) Engaging a regional electricity provider in these discussions.
	- Overview of SMART (Specific, Measurable, Achievable, Relevant, and Timely) Goals or "Commitments" stated in the CBP.

Community Benefits Plan (CBP) Overview

SMART (Specific, Measurable, Achievable, Relevant, and Timely) Goals or "Commitments" stated in the CBP.

- (i) Hiring of summer interns from HBCU/MSI pools.
- (ii) Engagement of HBCU partner community re: siting of Phase 2 prototype demonstration activity.
- (iii) Plan for *increasing diversity of the applicant pool.*
- (iv) Using process including UTK societal team participants along with industry-facing partner, identify one community of interest and engage to begin assessing environmental impacts of proposed Phase 2 deliverable.

CBP Timeline / Implementation Roadmap

Planning to Make a Plan

Timeline:

- Q1/Q2: multiple CBP milestones, mostly oriented to preliminary team formation and charging the teams. Completed.
- Q2: Identification of interns to participate in the work of the project. Given the short project length, focused in internal; proposal written for more ('100K Innovation Fund).
- Q3: 'Town hall' discussions of (preliminary) design, engaging TSU and UPR as well as other stakeholders; completion of geographic surveys to identify likely communities affected and possible effects. Underway.
- Q4: Reporting of full plan for each element of CBP, including update J40 and community engagement plans.

Plans for Near Future Testing, Development, and Commercialization

• DAC

—Continue scaling up system in partnership with ORNL and Holocene

- -Demonstrate captured $CO₂$ delivery into electrolyzer at optimized flow rates and humidification levels to corroborate benchtop scale studies
- $CO₂$ electrolyzer
	- —Catalyst durability studies and ASTs
	- —Fabricate and test flow fields
	- —3D multiphysics modeling and DRT analysis to identify other loss mechanisms
- Integrated reactor
	- —Build and demonstrate lab-scale integrated demonstration reactor
- Spin-out to partner

Summary

- CDP-based solid acid electrolyzer offers a unique technology platform with potentially transformative operating efficiencies and thermal integration with methanol production
- ORNL/Holocene DAC system is the best-case for systems integration
- TEA/LCA high level calculations suggest that over 1.5 kg of $CO₂$ may be mitigated per tonne of methanol produced at a cost of \$697-748 per tonne

Acknowledgements

- Thanks to DOE/NETL for the funding.
- Thanks to Naomi O'Niel for her help and guidance as our NETL POC
- Thanks to our advisors (Karen, Ryan and Stafford)
- Thanks to our colleagues at the University of Puerto Rico, Tennessee State University, TVA for helpful discussions in advancing the CBP discussions
- Thanks to Colt Griffith (UTK GRA) for his work on the ASPEN modeling
- Thanks to Calum Chisholm for his work with us on scaling up

