

MIDACE:

Methanol from Integrated Direct Air Capture and Ceramic Electrolysis

FECM CONFERENCE

DE-FE0032403

8/8/2024

DR. DUSTIN MCLARTY FOUNDER OF AEM

Funding, Cost Share & Project Team

Tack	Endoral	Non-	Key Personnel	Organization	Role		
Ιάδκ	Feueral	Federal	Dustin	WSU & AEM	PI and		
TEA / LCA	\$120,000	\$30,000	McLarty		Pressurized Electrolysis		
Community Benefits	\$40,000	\$10,000	Jonas Baltrusaitis	Lehigh University	Methanol Synthesis and Refinement		
Experiments	\$80,000	\$20,000	Matthew Green	ASU	Carbon Capture		
Conceptual Design	\$160,000	\$40,000					
Design			Justin Flory	ASU	Carbon		
Total	\$400,000	\$100,000			Capture		
			Klaus Lackner	ASU	Carbon Capture		

MIDACE Objectives

- Perform a detailed technoeconomic and lifecycle assessment of a green methanol plant that couples the mass flow and heat transfer between direct air capture (DAC), high temperature electrolysis, and a methanol synthesis reactor
- Using existing experimental facilities and modeling capabilities to address three knowledge gaps:
 - Knowledge Gap 1: How does elevated temperature improve yield and accelerate sorbent regeneration?
 - Knowledge Gap 2: Can the electrolyzer directly produce a pressurized syngas feedstock while avoiding in-situ methanation?
 - Knowledge Gap 3: What reactor feedstock operating conditions maximize reaction kinetics and minimize electrolyzer load?

Project Performance Dates

March 19 – 2024: Complete kickoff, initial community benefits, management plan and technology maturation plan

❑ June 19 – 2024: Complete initial SOEC co-electrolysis experiments, methanation risk assessment, DAC performance measurements at elevated temperature, rWGS modeling, and feedstock study

September 19 – 2024: Complete pressurized coelectrolysis experiments, DAC regeneration & purity tests, synthesis reactor sizing, and distillation column sizing

December 19 – 2024: Complete final TEA, LCA, and community benefits

System Capital and O&M cost \$/MWh

VYZion converts renewable electricity collected into green hydrogen 20% more efficiently than PEM

- VYZion can directly electrolyze CO2
- VYZion integrates with pressurized thermochemistry to synthesize green methanol

VYZion increases power density 20x and lowers cost 5x compared to state-ofthe-art SOEC

Technology Background (SOC)

Long history of miniaturization to achieve more active surface per unit material

Progress required both a material and manufacturing innovation

5x 10 stacks modules ~ 1MW

DEAI END

Tubular cells from Westinghouse in 90's

Rolls-Royce high density tubular cells 00's

Imperial College microtubular cells 00's

Long history of design and manufacturing evolution to improve seals and lower cost

Bloom Planar Stack 00's

Ceres Metal supported cells 2010's Saint-Gobain Monolith 2010's <1/100th volume and mass of competitor

AEM's VYZion monoliths 2020's

Innovation # 1: VYZ

Vanadia and Yttria co-doped Zirconia

- Patented new material composition
 - (US 11,594,738 B2)
- Forms same stable cubic compatible with YSZ electrolyte
- Survives at pressure
- Catalyzes reactions

Innovation # 2: DPP-AM

Dry Powder Pressing Additive Manufacture

- Deposits multi-compositional powder layers deposited
- Internal gas routing formed via fugitive powder
- Seal less 3-D architecture with topological optimization
- No hot metal components

Technology Background (NuAria DAC module

- The sorbent is fabricated in the form of wound membranes.
- The system can be easily scaled by using 100's of these cylindrical modules, working together to capture CO₂.
- The unique morphology of the composite allows efficient CO₂ capture.

Schematic of proposed sorbent module with capture capacity of 2kg/day

Technical Approach

- High temperature co-electrolysis produces a syngas from water and DAC
- The synthesis volatiles are oxidized to produce heat and retain carbon in the loop

MIDACE Advantages

- Directly utilizes crude CO₂
 - Avoids costly and energy consuming feedstock refining
- High pressure co-electrolysis
 - Pumping liquid water instead of compressing hydrogen saves 10% energy
- Dry syngas feedstock to synthesis reactor
 - Utilize commercial catalysts and reactors optimized for fossil feedstock
- Elevated pressure synthesis improves selectivity and conversion at higher temperature
 - Faster kinetics results in smaller and cheaper reactor
- Oxy-combustion of distillation volatiles
 - Net conversion of >96% captured CO2
 - Produces steam for sorbent regeneration or electrolyzer feedstock
 - Utilizes portion of electrolyzer O2 production
- High temperature sorbent regeneration
 - Increase CO₂ yield per gram of sorbent
 - Reduce regeneration cycle time

Success Criteria

Documented experimental and conceptual design efforts that justify down selection of key technology elements (DAC, SOEC, rWGS) and operating variations (reactor temperatures, pressures, and flows) that minimize risk, cost, and carbon intensity for the prototype and full-scale continuous production systems including:

- I. A detailed state table supported by experimental measurements and modeling
- II. A technoeconomic analysis quantifying a production cost below \$800/ton for 100,000ton/yr
- III. A life-cycle analysis carbon intensity estimate
- IV. A summary of remaining technological uncertainty within the system components and a clear plan to address the gaps prior to prototype construction
- V. A design for hardware integration that demonstrates system viability and addresses environmental health and safety risks

MIDACE Challenges

	R	isk Rating	_					
Perceived Technical Risk	Probability	Impact	Overall	Mitigation/Response Strategy				
	(Lov	v, Med, Hig	h)	1				
Non-coincident power and CO_2 production	High	Med	Med	Low pressure crude CO_2 storage and firm the wind/solar with hydroelectric				
Low capacity factor	High	Med	Med	Storage capacity and batch reactor				
CO ₂ accelerating SOEC degradation	Med	Med	Med	Blend CO ₂ downstream in a rWGS reactor [12]				
Accelerated SOEC degradation at >50bar	High	Low	Low	Maintain baseline design with syngas compressors				
Excessive methanation within the electrolyzer	Med	Low	Low	Utilize rWGS to avoid CO ₂ in SOEC				
High temperature degrades sorbent	Low	Low	Low	Experimental corroboration of model prediction and sorbent stability at 250°C				
Accelerated methanol catalyst degradation	Low	Low	Low	Maintain baseline design matching existing operations				
Inert accumulation due to carbon recycle loop	Med	Med	Med	Additional N_2/CO_2 separation prior to vent and/or reduce carbon utilization				
Recovered steam insufficient for sorbent	Med	Low	Low	Utilize cooling water, add solar thermal and electric heaters				

Technical Approach (DAC Testing)

- Regeneration experiments measuring the adsorption of CO2 on up to 250°C with indirect heating
- Corroborate the sorbent thermal stability with cycling experiments
- Design a 'continuous' system operating with the diurnal weather and solar power availability

Technical Progress (DAC Testing)

- Measurement taken with differential scanning calorimeter
- 4.7 mg sorbent sample

Technical Progress (DAC Testing)

- Confirmed via IRGA that CO₂ adsorption was dominant gas released, e.g. 1000's ppm vs ppt H2O
- Different heating rates and ultimate temperatures to eliminate measurement of organic residuals from prior TGA/IRGA testing

Technical Approach (SOC Testing)

- Expanded existing facilities to compare i) baseline steam electrolysis operation, ii) co-electrolysis, and iii) co-electrolysis with oxygen contaminant
 - Investigate single-pass vs. recirculated feedstock (inlet H2O)
 - Investigate high steam utilization operation (outlet H2O)
- Measure in-situ methane production under changing temperature, pressure and steam utilization conditions
- Test durability of VYZion cells coelectrolyzing steam and CO2

Technical Progress (SOC Testing)

- Witnessed typical break-in period, and transition to steady-state performance
- Degradation equivalent to 6.7 year lifespan to 75% power
- Dimensionless performance shown due to proprietary knowledge of pressurization benefits
- Power density exceeded initial modeling expectations
- Acceptable methane
 concentrations at 30 bar, awaiting
 60+ bar measurements

Technical Approach (CH3OH synthesis)

- Reactor selectivity and conversion sensitivity study (theoretical process modeling study)
 - Vary inlet H2: (CO +CO2) ratio
 - Vary inlet CO:CO2 ratio
 - Vary inlet H2O
 - Vary pressure
 - Vary temperature
 - Vary inert amount
- Distillation column sensitivity study
 - Size vs reflux ratio and recovered methanol purity
- System energy and cost optimization

Technical Progress (CH3OH Synthesis)

Column design for 131 kg/hr (1,144 Tonne/yr) MeOH at 99% purity

 At this small capacity a packed column would be better than a 22 cm diameter and 8.4 meters high set of trays, but distillation column scales better to 1Mton/yr

	Name	Value	Units
Te	mperature	38.9845	С
Su	ubcooled temperature		
• н	eat duty	-86.5916	kW
Su	ubcooled duty		
Di	stillate rate	4.09125	kmol/hr
Re	eflux rate	3.36073	kmol/hr
Re	eflux ratio	0.821444	
Fr	ee water distillate rate		
Fr	ee water reflux ratio		
Di	stillate to feed ratio		

Reboiler / Bottom stage performance									
	Name	Value	Units						
	Temperature	115.9	с						
Þ	Heat duty	88.3804	kW						
	Bottoms rate	1.48817	kmol/hr						
	Boilup rate	7.52788	kmol/hr						
	Boilup ratio	5.05848							
	Bottoms to feed ratio								

Condenser	CW			Reboiler	LPS		
Duty	-86.5916	kW	•	Duty	88.3804	kW	•
Usage	6.70956	tonne/hr	•	Usage	0.152479	tonne/hr	•
Cost	0.110352	\$/hr	•	Cost	2.47536	\$/hr	•
CO2 emission rate			~	CO2 emission rate	0.0209205	tonne/hr	•

Value	Units
28	
8.4	meter
1.51376	meter
0.109749	bar
1	
1	
	bar
0.0313641	hr
	Value 28 8.4 1.51376 0.109749 1 1 1 0.0313641

Sec	tions													
		Start Stage	End Stage	Diameter		Section Height		Internals Type	Tray Type or Packing Type	Section Pressure Drop		% Approach to Flood	Limiting Stage	
	CS-1	2	29	0.219561	meter	8.4	meter	TRAY	SIEVE	0.109749	bar	80.0002	2	View

Technical Progress (Sensitivity Study)

Parameter	Primary Component	Units	Min	Nominal	Max
H2O:CO2 feedstock	Electrolyzer	Ratio	3:1	3.56:1	4:1
Crude CO2 impurity	DAC	<mark>% O2</mark>	<mark>0.25%</mark>	<mark>1%</mark>	<mark>4%</mark>
Synthesis Purge	MeOH synthesis	%	1%	2%	10%
Synthesis Reactor Length	MeOH synthesis	m	0.125	0.5	1.0
Reactor Tube Diameter	MeOH synthesis	cm	2	10	20
Regeneration Temperature	DAC	°C	<mark>200</mark>	<mark>225</mark>	<mark>250</mark>
Steam Utilization	Electrolyzer	%	80%	90%	95%
Electrolyzer Temperature	Electrolyzer	°C	650	750	800
Synthesis Pressure	MeOH synthesis	Bar	30	90	100
Synthesis Temperature	MeOH synthesis	°C	240	265	290
<mark>Vacuum pressure</mark>	<mark>DAC</mark>	<mark>kPa_a</mark>	<mark>1</mark>	<mark>10</mark>	50
Water knockout Temperature	<mark>MeOH synthesis</mark>	°C	<mark>25</mark>	<mark>150</mark>	<mark>250</mark>

Community Benefits Plan (CBP)

Overarching Intentions:

 Describe plans for an impact assessment of siting a new green methanol plant adjacent to a waterway or port facility

Populations impacted:

- None during Phase I or II
- If commercialized, an undetermined community near a port or waterway with stranded renewable energy potential

SMART Goals and "Commitments":

DEIA: Complete annual DEIA training provided by University administration.

- J40: Complete the collection of economic, demographic, and labor statistics of two similar waterway or port adjacent communities with and without existing chemical processing plants.
- CSE: Invite the HOA president, planning/zoning official, and fire-chief back to AEM for an additional site visit to identify any safety or equity concerns with existing and planned testing activities.
- Quality Jobs: Estimate the cost to attract, train, and retain a skilled and well-qualified workforce during the construction and operation of a green methanol plant.

Lessons learned

- Preheating necessary to avoid 2-phase CO2 impacting gas mass flow meters in pressurized SOEC test stand
- Helium needed as gas chromatograph sweep gas for accurate CO measurements
- □ TGA and IRGA needed to confirm mass loss and composition to accurately determine heat requirement from DSC measurements

Commercialization Plan

2024

- Refine powder deposition for thinner layers and/or faster deposition
- Fabricate >500mL monoliths
- Complete fabrication of second 4000psi test stand
- Optimize material and catalyst composition via high-throughput cell testing

2025-2026

- Test multi-kW monolith > 2,000 hrs
- Test 20m stack-effect sorbent tower
- Demonstrate integrated CH3OH synthesis and distillation at >50kW scale
- Design MW-scale field prototype

2027-2028

- Scale material production and monolith fabrication
- Test thermal and electrical integration of multiple 50kW VYZion modules
- Assemble and validate
 MW-scale prototype and
 begin field validation
- Refine and value engineer the electrical and chemical system balance of plant

Summary

Selected high temperature sorbent exceeds expectations for production vs heat, e.g. requires 141 kJ/mol rather than target 200 kJ/mol

- Negligible methane produced at 30 bar
- Solid oxide degradation at pressure exceeded expectations, e.g. 0.4%/khr
- Synthesis purity exceeded initial estimates, reducing vent requirements
- Development on-track for commercial-scale sub \$800/ton methanol production in 2028

Organization Chart

Key Personnel / Role Phase I participants

WASHINGTON STATE **I JNIVERSITY**

Cameron Bennethum Stephen Woodward

Dustin McLarty Project PI Pressurized Electrolysis

Matthew Green Sorbent Production and Measurements

Phase I ancillary support

Ryan Hamilton

ARIZONA STATE NIVERSITY

Emilianny Batista Magalhaes

Justin Flory & Klaus Lackner Advising DAC System Design

Jonas Baltrusaitis Methanol Synthesis& **Distillation Modeling**

Mani Modayil Korah

Gannt Chart

		Q1			Q2		Q3				Q4	4	
	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	
Task 1: Project Management and Planning	•												
Subtask 1.1: Project Management Plan			**										
Subtask 1.2: Technology Maturation Plan			**									**	
Subtask 1.3: State Point Data Table												**	
Subtask 1.4: Preliminary Techno-Economic Analysis												**	
Subtask 1.5: Preliminary Life Cycle Analysis												**	
Subtask 1.6: Technology Gap Analysis												**	
Subtask 1.7: Technology EH&S Risk Assessment												**	
Task 2: R&D Community Benefits Plan (CBP)	•		**									*:	
Task 3: Experimental Work	•								-0	_			
Subtask 3.1: Degradation with blended feedstock			**										
Subtask 3.2: Methanation Risk Assessment						**							
Subtask 3.3: Direct Carbon-dioxide Electrolysis									**				
Subtask 3.4: DAC Sorbent Regeneration						**							
Task 4: Conceptual Design	•											-•	
Subtask 4.1: Pressurized rWGS Reactor Modeling			**							_			
Subtask 4.2: Synthesis Reactor Feedstock Study						**							
Subtask 4.3: Synthesis Reactor Design Specification									**				
Subtask 4.4: Distillation Column Design Specification									**				
Subtask 4.5: Elevated pressure sorbent regeneration									**				
Subtask 4.6: Continuous Production-Scale Regeneration												**	