An Experimental and Computational Approach to Investigating CO₂ Uptake of Cellulose-Producing Algae from Cellulosic Ethanol Product (FE0032207)

Wafa Maftuhin, Bryan Wong, Charles M. Cai University of California - Riverside

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Overview

- Funding (DOE and Cost Share): \$400,000 & \$0 Cost Share

- Overall Project Performance Dates

Task Number and Name (Timeline in Months)	6	12	18	24	30	36
1.0: Project Management						
Update Project Management Plan and Kick-off meeting with DOE/NETL						
2.0: Optimize N. salina on Effluent Gas from Cellulosic Fermentation						
2.1: Preparation of CELF-Pretreated Biomass Materials for SSF						
2.2: Culturing of N. salina and Enhancement of Biomass Density						
2.3: Co-solvent Extraction of Lipids and Recovery of Cellulose from Algae						
2.4: Quantify Cellulose/Lipid Content and Calculate Carbon Uptake Efficiency						
3.0: Model CO ₂ Uptake Efficiency and Cellulose Production						
3.1: DFT Calculations of CO ₂ Binding Interactions						
3.2: GPU-Enhanced DFTB Calculations of Cellulose Production						
4.0: Techno-economic and Life Cycle Analysis of CAPOC Integration						
4.1. Build TEA Model of CAPOC						
4.2: Build GREET LCA Model of CAPOC						

Project Overview

- Project Participants:
- Prof. Bryan Wong (PI):
 Large-scale computational simulations
- Dr. Wafa Maftuhin (Postdoctoral associate): Large-scale computational simulations
- **Dr. Charles Cai (co-Pl):** Cellulose experiments
- Marcus Catapang (Graduate Student): Cellulose experiments
- Aira Aquino (Undergraduate Student): Cellulose experiments

- Overall Project Objectives

Technology Background

Nannochloropsis Characteristics:

- Produces both lipids and cellulose.
- Fast growth rate
- · Can be cultivated in various environments
- Cellulose in *Nannochloropsis* is concentrated in the cell wall, making it recalcitrant.

Cellulose Production:

- Cellulose is a valuable biopolymer, useful when hydrolyzed to glucose.
- Crystalline cellulose can be processed into microcrystalline cellulose for various applications.

Technology Background

- Economic & environmental benefits
 - Capturing CO₂ from ethanol fermentations supports algal production and enables potential greenhouse gas savings
 - Lignin generated as byproduct can provide heating to support cellulosic ethanol production & algal cellulose production
 - Lignin is biogenic: its combustion is carbon neutral

Technology Background

Conventional Carbon Capture:

- Focuses on CO₂ storage and transportation as a commodity.
- Involves high production costs for pure and high-pressure CO_2 .
- Requires expensive capture devices and complex logistics.
- Market-sensitive off-take agreements and fluctuating commodity prices.

Proposed Method:

- Use highly pure CO_2 effluent from ethanol fermentation as direct feed for algal cultures.
- Ethanol fermentation effluent can reach up to 39% $\rm CO_2$ concentration in bioreactor headspace.
- Direct feeding of moist CO_2 effluent to algal cultures avoids drying and concentration costs.
- Eliminates the need for exogenous CO₂ capture, drying, and storage, reducing overall costs.

Technical Approach/Project Scope

a. Project steps and work plan

Project schedule

Milestone	Milestone Title and Description	Date	Status (%)	Success Criteria
M1	Kick-off meeting with DOE/NETL Project Officer/Manager	09/01/22	100%	Kickoff meeting attended
M2	Preparation of CELFPretreated Biomass Materials for SSF	06/15/23	100%	Produce up to 1 kg of CELF-pretreated poplar wood for SSF
МЗ	Culturing of N. Salina and Enhancement of Biomass Density	12/31/23	100%	Achieve 1 g/L DW algae broth density using CO ₂ effluent from SSF of biomass
M4	Co-solvent Extraction of Lipids and Recovery of Cellulose fromA lgae	09/30/24	50%	Achieve >90% recovery of cellulose and lipids
M5	Quantify Cellulose/Lipid Content and Calculate Carbon Uptake Efficiency	11/31/24		Achieve >20% cellulose content in algal cell wall and 30 wt% lipid content
M 6	DFT Calculations of CO ₂ Binding Interactions	06/31/24	50%	Binding energies calculated and verified with experiment
M7	GPU-Enhanced DFTB Calculations of Cellulose Production	11/30/24		DFTB calculations used to explore microcrystalline cellulose production
M8	Build TEA model of CAPOC	12/31/23	80%	Successfully develop and run TEA model in AspenOne environment
M9	Build GREET LCA model of CAPOC	02/28/25		Demonstrate GHG savings of >85% compared to conventional petroleum processing to fuels

Project risks and mitigation strategies

Devestued Diele	Risk Rating			Mitigation/Decourse Strategy			
Perceived Risk	Probability	Impact	Overall	wingation/Response Strategy			
Financial Risks:							
Expenses may not be adequate	Low	Medium	Low	The PI and co-PI have monthly meeting			
Cost/Schedule Risks:							
Proposed schedule may not be adequate	Low	Medium	Low	The PI and co-PI have weekly meetings			
Technical/Scope Risks:							
The various life cycle and quantum calculations in this project may require several iterations to converge.	Low	Medium	Low	The PI and co-PI have over 18 years of experience			
Management, Planning, and Oversight Risks:							
Unanticipated delays may occur during the project	Low	Medium	Low	The PI contact the DOE/NETL Program Officer to discuss options and agree on a course of action.			
ES&H Risks							
Safety issues may arise during the assessment.	Low	Low	Low	All safety equipment is regularly monitored per regulations by the university.			
External Factor Risks:							
Unanticipated external factors (such as the COVID-19 pandemic) may delay progress	Low	Medium	Low	The PI and co-PI have already ramped up the laboratories to nearly full speed			

Progress and Current Status of Project

Optimize N. Salina on Effluent Gas from Cellulosic Fermentation

- Performed CELF pretreatment on industrial hemp and corn stover.
- Target: 80% glucan concentration in pretreated solids.

Results:

- Corn stover: >80% glucan achieved.
- Industrial hemp: 75% glucan achieved.
- Optimization underway to improve glucan content in industrial hemp.
- Next step: Measure CO₂ emission from fermentation.

Knife-milled industrial hemp stalk subjected to mild CELF pretreatment

SSF of CELF-pretreated industrial hemp at 100 g/L initial loading. Observed rapid solubilization of solids over first four days. Ethanol analysis under way.

Life cycle analysis

Techno-economic & life cycle analysis will support quantitative outcomes

- Integrated CELF pretreatment, solids filtration, solvent recovery, and neutralization in AspenOne.
- Optimizing heat recovery to calculate initial energy balance.
- Target: 4.5 kWh/tonne biomass input for total heat utilization.

DFTB Primer

Large-scale Density Functional Tight Binding (DFTB) calculations will probe cellulose formation

DFTB Primer

$$E_{DFTB} = E_{BS} + E_{Coul} + E_{rep}$$

$$E_{Coul} = \frac{1}{2} \sum_{IJ} \gamma_{IJ} \left(R_{IJ} \right) \Delta q_I \Delta q_J$$

$$\gamma_{IJ}(R_{IJ}) = \begin{cases} U_{I}, & I \\ erf(C_{IJ}R_{IJ}), & I \\ \hline R_{IJ} & I \end{cases}$$

TT

= J

≠ **J**

parametrized beforehand from DFT calculations

Pre-parameterization allows fast calculations of large systems

Lignin model

Lignin subunits:

Small scale simulations

NVT (1000 K): Nose-Hoover Thermostat

Temperature effect: fractionation of lignin dimer β-O-4

Fractionation shown by increasing bond distances

Small scale simulations

Fractionation observed

No fractionation observed

S-S

GPU-Enhanced DFTB Calculations

list of libraries:

- Eigenvalue SoLvers for Petaflop-Applications (ELPA)
- Matrix Algebra on GPU and Multicore Architectures (MAGMA)
- ELectronic Structure Infrastructure (ELSI)

Comparison of CPU vs GPU (1 node) for geometry optimization of Lignin dimer (Smaller is Better)

Large scale DFTB-MD

Lessons Learned

- The difference in glucan concentration achieved between corn stover and industrial hemp highlighted the need for continuous optimization. Tailoring CELF pretreatment conditions is crucial to maximize efficiency and yield.
- Combining experimental methods with large-scale DFTB simulations proved essential. This synergy aids in accurately representing and understanding chemical reactions, thus enhancing the predictive power of our models.
- Supports two students and a postdoctoral associate.
- Promotes diversity by involving underrepresented minority students.
- Enhances hands-on learning in CO₂ conversion and agriculture.
- The PI and co-PI continue to work together on the large-scale DFTB calculations that would be used to complement the experimental efforts

Plans for future testing

- Continue advancing experimental aspects of the project.
- Explore new molecular configurations in large-scale DFTB simulations to understand reactivity of large biomolecular systems.
- Aim to observe chemical reactions that align more closely with experimental conditions.
- Investigate combined experimental and computational approaches.

Summary

Summary

CELF Pretreatment

- Corn stover: >80% glucan achieved.
- Industrial hemp: 75% glucan achieved.

Molecular Simulations for cellulose formations:

- Increased temperatures can speed up the fractionation of lignin dimers
- a single-node GPU can remarkably speed up DFTB calculations by up to 15 times compared to a single-node CPU.

Future plans

- Improve glucan composition for industrial hemp
- Measure CO₂ emission from fermentation
- AspenOne: optimizing heat recovery

• Large-scale simulation based on DFTB-GPU

for both G-G and S-G lignin dimers at 1000K

Combining experimental and computational approaches in optimizing CELF pretreatment and utilizing CO_2 from ethanol fermentation for algal production is essential for advancing cost-effective and efficient CO_2 uptake methods

Thank You

Acknowledgements

Web: <u>http://bmwong-group.com</u>

E-mail: bryan.wong@ucr.edu

Acknowledgment: This material is based upon work supported by the Department of Energy Award Number DE-FE0032207.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

