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Project Overview

− Funding (DOE and Cost Share): $400,000 & $0 Cost Share

− Overall Project Performance Dates
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Project Overview 

− Project Participants:
 Prof. Bryan Wong (PI): 
     Large-scale computational simulations 

 Dr. Wafa Maftuhin (Postdoctoral associate): 
Large-scale computational simulations 

 Dr. Charles Cai (co-PI): 
     Cellulose experiments 

 Marcus Catapang (Graduate Student): 
Cellulose experiments 

 Aira Aquino (Undergraduate Student): 
Cellulose experiments 

- Overall Project Objectives
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Cellulose Production:
 Cellulose is a valuable biopolymer, useful when 

hydrolyzed to glucose.

 Crystalline cellulose can be processed into 
microcrystalline cellulose for various applications.

Nannochloropsis Characteristics:
 Produces both lipids and cellulose.

 Fast growth rate

 Can be cultivated in various environments

 Cellulose in Nannochloropsis is concentrated in the 
cell wall, making it recalcitrant.

Technology Background
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Technology Background

 Economic & environmental benefits

 Capturing CO2 from ethanol fermentations supports 
algal production and enables potential greenhouse 
gas savings

 Lignin generated as byproduct can provide heating 
to support cellulosic ethanol production & algal 
cellulose production

 Lignin is biogenic: its combustion is carbon neutral
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Conventional Carbon Capture:

 Focuses on CO2 storage and transportation as 
a commodity.

 Involves high production costs for pure and 
high-pressure CO2.

 Requires expensive capture devices and 
complex logistics.

 Market-sensitive off-take agreements and 
fluctuating commodity prices.

Proposed Method:

 Use highly pure CO2 effluent from ethanol 
fermentation as direct feed for algal cultures.

 Ethanol fermentation effluent can reach up to 39% 
CO2 concentration in bioreactor headspace.

 Direct feeding of moist CO2 effluent to algal 
cultures avoids drying and concentration costs.

 Eliminates the need for exogenous CO2 capture, 
drying, and storage, reducing overall costs.

Technology Background

6



Materials Science & 
Engineering Program

7

Technical Approach/Project Scope

a.  Project steps and work plan Project schedule
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Technical Approach/Project Scope
Project risks and mitigation strategies
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Optimize N. Salina on Effluent Gas from Cellulosic Fermentation

 Performed CELF pretreatment on 
industrial hemp and corn stover.

 Target: 80% glucan concentration in 
pretreated solids.

Results:

 Corn stover: >80% glucan achieved.

 Industrial hemp: 75% glucan achieved.

 Optimization underway to improve 
glucan content in industrial hemp.

 Next step: Measure CO2 emission from 
fermentation.

Knife-milled industrial hemp stalk 
subjected to mild CELF 
pretreatment

SSF of CELF-pretreated industrial hemp at 
100 g/L initial loading. Observed rapid 
solubilization of solids over first four days. 
Ethanol analysis under way.
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Life cycle analysis
Techno-economic & life cycle analysis will support quantitative outcomes

AspenOne software using modified GREET model

 Integrated CELF pretreatment, solids filtration, solvent recovery, 
and neutralization in AspenOne.

 Optimizing heat recovery to calculate initial energy balance.

 Target: 4.5 kWh/tonne biomass input for total heat utilization.
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DFTB Primer

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐷𝐷𝐵𝐵 + 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 𝑬𝑬𝑩𝑩𝑩𝑩 = �
𝒊𝒊

𝒐𝒐𝒐𝒐𝒐𝒐

�
𝝁𝝁𝝁𝝁

𝒐𝒐𝝁𝝁𝒂𝒂∗𝒐𝒐𝝁𝝁𝒂𝒂𝑯𝑯𝝁𝝁𝝁𝝁
𝟎𝟎

parametrized beforehand from DFT calculations

𝑆𝑆𝜇𝜇𝜇𝜇 = � 𝜙𝜙𝜇𝜇 𝑟𝑟 𝜙𝜙𝜇𝜇 𝑟𝑟 𝑑𝑑3𝑟𝑟

𝐻𝐻𝜇𝜇𝜇𝜇0 = 𝜙𝜙𝜇𝜇 𝐻𝐻0 𝜙𝜙𝜇𝜇

Large-scale Density Functional Tight Binding (DFTB) calculations will 
probe cellulose formation
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𝜸𝜸𝑰𝑰𝑰𝑰 𝑹𝑹𝑰𝑰𝑰𝑰 = �
𝑼𝑼𝑰𝑰,

𝒆𝒆𝒆𝒆𝒆𝒆 𝑪𝑪𝑰𝑰𝑰𝑰𝑹𝑹𝑰𝑰𝑰𝑰
𝑹𝑹𝑰𝑰𝑰𝑰

,
𝑰𝑰 = 𝑰𝑰

𝑰𝑰 ≠ 𝑰𝑰𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
1
2
�
𝐼𝐼𝐼𝐼

𝛾𝛾𝐼𝐼𝐼𝐼 𝑅𝑅𝐼𝐼𝐼𝐼 𝛥𝛥𝑞𝑞𝐼𝐼𝛥𝛥𝑞𝑞𝐼𝐼

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐷𝐷𝐵𝐵 + 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟

parametrized beforehand 
from DFT calculations

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝐼𝐼<𝐼𝐼

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
𝐼𝐼𝐼𝐼 𝑅𝑅𝐼𝐼𝐼𝐼

Pre-parameterization allows fast calculations of large systems

DFTB Primer
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Lignin model
Lignin subunits:

Model of lignin dimer β-O-4:

β-O-4

p-hydroxylphenyl (H)syringyl (S)guaiacyl (G)

Connected interlinkages:

• G-G

• G-S

• S-G

• S-S

• S-H

• H-S

• H-H

• S-H

14



Materials Science & 
Engineering Program

Small scale simulations

Temperature effect: fractionation of lignin dimer β-O-4

Fractionation shown by increasing bond distances

NVT (1000 K): Nose-Hoover Thermostat
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G-S

S-SH-S

H-H

No fractionation observed

G-H

Fractionation observed

G-G

Small scale simulations

S-G
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GPU-Enhanced DFTB Calculations
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~15x faster

DFTB performace: CPU vs GPU

Comparison of CPU vs GPU (1 node) for geometry 
optimization of Lignin dimer (Smaller is Better) 

list of libraries:

 Eigenvalue SoLvers for Petaflop-
Applications (ELPA)

 Matrix Algebra on GPU and Multicore 
Architectures (MAGMA)

 ELectronic Structure Infrastructure 
(ELSI)
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Large scale DFTB-MD
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Lessons Learned

 The difference in glucan concentration achieved between corn stover and industrial 
hemp highlighted the need for continuous optimization. Tailoring CELF pretreatment 
conditions is crucial to maximize efficiency and yield.

 Combining experimental methods with large-scale DFTB simulations proved essential. 
This synergy aids in accurately representing and understanding chemical reactions, thus 
enhancing the predictive power of our models.

 Supports two students and a postdoctoral associate.

 Promotes diversity by involving underrepresented minority students.

 Enhances hands-on learning in CO2 conversion and agriculture.

 The PI and co-PI continue to work together on the large-scale DFTB calculations that 
would be used to complement the experimental efforts
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Plans for future testing

 Continue advancing experimental aspects of the project.

 Explore new molecular configurations in large-scale DFTB simulations 
to understand reactivity of large biomolecular systems.

 Aim to observe chemical reactions that align more closely with 
experimental conditions.

 Investigate combined experimental and computational approaches.
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Summary

CELF Pretreatment
 Corn stover: >80% glucan achieved.

 Industrial hemp: 75% glucan achieved.

Molecular Simulations for cellulose 
formations:
 Increased temperatures can speed up the 

fractionation of lignin dimers

 a single-node GPU can remarkably speed up DFTB 
calculations by up to 15 times compared to a 
single-node CPU.

 Improve glucan composition for industrial hemp

 Measure CO2 emission from fermentation

 AspenOne: optimizing heat recovery 

Future plans

 Large-scale simulation based on DFTB-GPU

    for both G-G and S-G lignin dimers at 1000K

Summary

Combining experimental and computational approaches in optimizing CELF pretreatment and utilizing CO2 from ethanol 
fermentation for algal production is essential for advancing cost-effective and efficient CO2 uptake methods
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Web: http://bmwong-group.com

E-mail: bryan.wong@ucr.edu
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