Ammonium Looping with Membrane Absorber and Distributed Stripper for Enhanced Algae Growth

DE-FE0031921

Bradley Irvin, Len Goodpaster, Otto Hoffman, Julia Parker, Robert Pace, Heather Nikolic, Mark Crocker and Kunlei Liu

Institute for Decarbonization and Energy Advancement University of Kentucky Lexington, KY

http://uknow.uky.edu/research/unique-public-private-researchconsortium-established-caer-co2-capture-pioneers

Project Overview

Overall Project Performance Dates

Task		Status	Deadline
	Budget Period 1	Complete	
	Budget Period 2	In progress	12-30-2024
Tasks 8 and 9	Integrated process assembly	Complete	
Task 10	Parametric Campaign	Complete	
Task 11	Long-term Campaign	Complete	
Task 12	ΤΕΑ	In progress	12-30-2024

Funding (DOE and Cost Share)

Budget Details (June 2023)	Federal Share	Cost Share (Cooperative Agreements)
Total Project (Award Value)	\$2,999,564	\$751,764
Total Budget Period 2 (planned)	\$1,800,234	\$421,211
Monthly Expenditures (planned)	\$140,397	\$42,776
Total Project (cumulative)	\$1,473,397	\$538,086
Total BP 2 (cumulative)	\$613,661	\$217,544

at **PPL**

R&D

Center

Project Participants

University of Kentucky

Project execution and communication

Risk identification and mitigation

Process integration and data analysis and reporting

Development and operation of proposed technology and derived facility

Vanderbilt University (Vanderbilt)

Optimization of the membrane capital and operation cost for scale-up Perform the TEA/LCA and provide H&MB tables and equipment sizing for the algae production process

Colorado

State

University

(CSU)

Trimeric Corporation

Conduct the TEA and LCA analyses

Technology Background

OR Capture and Utilization

ering

Process Overview

Unique, integrated CO₂ capture and utilization technology that:

- Reduces the cost of CO₂ capture
 - Boosts algae production

Direct to utilization CO₂ capture

Pilot-scale Integrated Process

LF Boiler

Solar Water Heater

Completed Assembly

Institute for **Decarbonization and** Energy Advancement at PPL R&D Center

Institute for Decarbonization and Energy Advancement at PPL

R&D Center

Gas sampling for product CO₂/NH₃ ratio

Alkalinity: 0.5 mol/kg	Run	Hot Oil Setpoint (°C)	Stripper bottom temperatur e (°C)	Stripper top temperatur e (°C)	Rich feed temperatur e (°C)	Lean loading (mol C/mol N)	CO ₂ :NH ₃ (exp mol/mol)
	1	140	93	90	89	0.424	2.53
	2	0	31	63	90	0.536	13.41
	3	0	84	78	79	0.512	11.47
	4	90	79	78	98	0.622	21.75
Alkalinity:	5	0	36	45	68	0.548	13.8
1.8 mol/kg	6	0	51	68	91	0.491	4.78
	7	0	52	98	92	0.454	4.21
	8	0	32	64	91	0.511	7.09
	9	0	54	64	92	0.504	5.84
	10	100	85	81	95	0.514	1.8

Determining Nutrient Ratio (CO₂/NH₄)

Institute

for Decarbonization and Energy Advancement at PPL R&D Center

Product Ratio: Experimental vs. Model

Product Ratio: Determined from High concentration CO₂ immersion probe.

Expected ratio is about 20, per ASPEN model.

≻ Ratio is stable around 10, as desired.

Ratio decreases with increasing solvent inlet temperature. This is controllable by adjusting the cold rich flow to the stripper.

Summary: Capture

- The ammonia looping process can function and produce desired product ratios at varying solvent alkalinities, even as low as 0.5 mol/kg.
- Product ratios of 10 or more are easily achievable with higher rich carbon loadings. Preferable greater than 0.45 mol/kg.
- Can capture CO_2 at any inlet concentration. However, if the desired product ratio of CO_2 :NH₄ is 10 or more, then the minimum inlet CO_2 concentration needs to be 2% or more.

Institute for Decarbonization and Energy Advancement at PPL

R&D Center

Algae Culturing

End

Initial Algae and ORP Data

Energy Advancement at PPL

R&D

Center

Algae Culturing: Comparison of Algae Productivity (Volumetric)

■ C1 ■ C2 ■ C3 ■ C4 ■ C5 ■ C6 ■ C7 ■ C8 ■ avg growth rate of all cycles

■ C1 ■ C2 ■ C3 ■ C4 ■ C5 ■ C6 ■ C7 ■ C8 ■ avg growth rate of all cycles

₹

Algae Culturing: Rotifer Population Data

man

Engineering

Institute

for

Decarbonization and

Energy Advancement at

PPL

R&D

Center

Algae Culturing: NH₃ Utilization (η_{NH3})

NH₃ utilization ranged from 30% - 98% by harvest cycle

Periods of high NH₃ utilization correspond to harvest cycles when algae growth was strongest

Algae Culturing: CO₂ Utilization (η_{CO2})

Low CO₂ utilization efficiencies due to high supplemental CO₂ flow and discontinuous nature of membrane absorber operation (i.e., algae productivity was nitrogen-limited during weekends)

Highest CO₂ utilization corresponds to periods of strong algae growth

Engineering Institute for Decarbonization and Energy Advancement at PPL R&D Center

man

Institute for

Decarbonization and

Energy Advancement at PPL

R&D Center

Algae Culturing: Compositional Analysis

	C (%)	N (%)	Ash (%)	Protein (%)			
2nd harvest cy	2nd harvest cycle						
ORP 2	48.1 ± 0.4	9.5 ± 0.1	6.0 ± 0.1	45.2 ± 0.1			
ORP 4	48.6 ± 0.6	8.5 ± 0.1	n.d.	40.7 ± 0.1			
3rd harvest cycle							
ORP 1	50.2 ± 0.5	9.7 ± 0.1	5.9 ± 0.1	46.6 ± 0.1			
ORP 2	48.4 ± 0.5	9.2 ± 0.1	7.1 ± 0.2	43.9 ± 0.1			
ORP 3	50.9 ± 0.4	8.6 ± 0.2	5.5 ± 0.1	41.1 ± 0.2			
4th harvest cycle							
ORP 1	50.5 ± 0.1	9.2 ± 0.0	5.0 ± 0.1	43.9 ± 0.0			
ORP 2	47.9 ± 0.2	9.0 ± 0.1	6.3 ± 0.1	42.9 ± 0.1			
ORP 4	51.8 ± 0.1	9.1 ± 0.0	6.0 ± 0.1	43.6 ± 0.0			
5th harvest cy	5th harvest cycle						
ORP 1	50.2 ± 0.3	9.5 ± 0.0	6.5 ± 0.1	45.2 ± 0.0			
ORP 2	50.4 ± 0.3	9.9 ± 0.2	6.9 ± 0.1	47.3 ± 0.2			

- Ash content low in all cases (albeit higher than for indoor experiments)
- No significant differences in protein or ash content between test and reference ponds

Lessons Learned

CO₂ Capture Team

Institute for **Decarbonization and Energy** Advancement at PPL

R&D

Center

Engineering

Plans for Future Testing & Development

Future testing

<u>Scale up algae growth</u>: Currently we are only using 1% of the total capacity of the capture unit, feeding 1800L of algae

X 100 → Total capacity, 180,000L (which about the size of a large swimming pool)

Development

- \succ Streamline the process, experimental \rightarrow commercial
- Could be used as a polishing step for point source capture to achieve net negative emissions.
- Direct air capture

Acknowledgements

- **DOE-NETL**: Isaac Aurelio, Gregory Imler, Patricia Rawls, Joseph Stoffa
- UKy: Lisa Richburg, Xiaoshuai Yuan, Fritz Vorisek, Yaying Ji, Steve Summers, and Reynolds Frimpong
- Colorado State University: Jason Quinn
- Vanderbilt University: Shihong Lin
- Trimeric Corporation: Andrew Sexton