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O ve rvie w
•Conceptual Design of 

•1) bench scale/movable 
system 
•2) 1000-tonne MeOH/yr 
system

•Optimize heat recovery
•Integrate novel process 
components to reduce energy
•Integrate renewable energy
•Community Benefits Planning
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Presenter Notes
Presentation Notes
ASU: develop IP used by carbon collect to build passive DAC pilot plant on ASU campus that we operate which eliminates energy and cost for moving large volumes of airNREL: is a world leader in renewable energy and hydrogen design, modeling and analysisAirCo: has developed transformational catalysts used in a commercial process for producing alcohols from CO2 with very high selectivity**Bench scale system designed to demonstrate and optimize integration processes that are not already established at scale (highest risk)CBP: will help facilitate a pathway toward commercialization of carbon-neutral methanol byCreating a diverse, equitable, inclusive and accessible research team, engaging with potential communities and stakeholders to develop technologies that generate quality jobs that lead to a just energy transitionJ. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Sorbent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022.https://www.netl.doe.gov/energy-analysis/details?id=d5860604-fbc7-44bb-a756-76db47d8b85a



Technology Fundamentals/Background

• DAC Subsystem
• H2 Subsystem
• CO2 to Fuel Subsystem
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DAC Sub syste m – ASU

Carbon Collect Inc. 
MechanicalTreeTM installed 
at ASU passively collects 
CO2 delivered by the wind 
from any direction with a 
low pressure drop.

"Sapling" kilogram-scale DAC regeneration system

• MechanicalTreeTM Pilot plant
• Passive direct air capture system with

30 tonnes/year design capacity.
• Eliminate forced air making up 40-60%

of energy & 50-70% of CAPEX.1

• Lab scale Setups
• Sapling - Kilogram scale temperature

vacuum swing regenerator with in situ
forced air capture or outdoor capture
in Mechanical Tree.
• Scale up 2-3x for Phase II system

• 561 L Wind tunnel – Measure CO2
adsorption vs wind speed and sorbent 
form factor.

561 L wind tunnel for CO2 sorption kinetics
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1) J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Sorbent
System," National Energy Technology Laboratory, Pittsburgh, PA, 2022.
https://www.netl.doe.gov/energy-analysis/details?id=d5860604-fbc7-
44bb-a756-76db47d8b85a

Presenter Notes
Presentation Notes
**40-60% of energy depending on pressure drop and 50-70% of CAPEX depending on contactor and fan size and number**Many thanks to Alex Zoelle for going over the numbers; looking forward to updated report from Sally Homsy and team**low energy use is critical for carbon neutral or carbon negative LCA**Energy use in forced air is highly sensitive to pressure drop (energies assume 625 Pa to just under 300 Pa)NETL: Monolith sorbent (625 Pa pressure drop) with carbon-free electricity

https://www.netl.doe.gov/energy-analysis/details?id=d5860604-fbc7-44bb-a756-76db47d8b85a
https://www.netl.doe.gov/energy-analysis/details?id=d5860604-fbc7-44bb-a756-76db47d8b85a


H2 Sub system – NREL
• Pilot Scale: 1MW balance of plant to
support PEM performance and
validation at the ESIF
• ≤ 125 cells, ≤ 4 k-Adc and 250 Vdc;
safety systems; 60 °C; 3 MPa H2

• Lab-scale: 2x25 kW, 100 kW, 3x150
kW electrolyzer systems
• Relationships with electrolyzer
manufacturers (20 years)
•Advanced Research for Integrated
Energy Systems (ARIES)
• Lessons learned from daily
unattended operations: H2O & Power!

• Mobile (3 – 25kW) RD&D
facility for H2, CO2
conversion, renewable 
natural gas (RNG),… RD&D – 
Behind the meter water & 
power!

1 MW Pilot-scale electrolyzer at NREL

NREL mobile RD&D e-fuels platform
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NREL mobile RD&D e-fuels platform

Presenter Notes
Presentation Notes
ARIES: specifically designed to evaluate integrating different renewable energy technologies including DAC



CO 2 to Fuel Sub system – Air Company
Capabilities: catalysts and reactors for CO2 to 
methanol, ethanol, gasoline, diesel fuel, and jet 
fuel
Methanol catalyst: Proprietary formulation; very 
low side product formation
Purity: ASTM, IMPCA grade, 99.9% selectivity after 
distillation
Pilot System: 280 MTPA; thermal fluid 
heating/cooling; demo with power plant flue gas.
Bench scale system: Clamshell furnace heat, 100–
400 mL MeOH/day, sufficient for Phase II

Air Company pilot-scale CO2 to fuels reactor system.

Air Company bench-scale CO2 to fuels reactor system (for Phase II).
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Advantages
• Reduce CAPEX/OPEX via process

intensification / heat integration

• Supply chain resilience (vs natural gas)

• Offtake for stranded renewables

• Co-locate production and usage

• Smaller scale distributed production

Challenges: 
• Cost

• DAC CO2: $175-530/tonne
• Renewable H2: $5,000-6,000/tonne
• CO2 to MeOH: $1,250-2,000/tonne

• DAC: variable CO2 supply, air
contamination

1. Sarp, S., Hernandez, S.G., Chen, C. and Sheehan, S.W., 2021.
Alcohol production from carbon dioxide: methanol as a fuel and
chemical feedstock. Joule, 5(1), pp.59-76.

1

Techno - economic challenge s                                                 and advantages
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Presenter Notes
Presentation Notes
DAC: batch process, varies with environmental conditions, temp, RH and perhaps wind29 methanol fueled ships; 228 on orderMethanol at pole position for Jan alternative fuel ship orders: DNV | S&P Global Commodity Insights (spglobal.com)



Approac h /
Scope

• Task 1.4 & 1.5 – TEA/LCA
• Task 1.8 – DAC subsystem design
• Task 1.9 – H2 subsystem design
• Task 1.10 – CO2 hydrogenator subsystem design
• Task 1.11 – Integrated Air2Fuel system design
• Task 2.0 – Community Benefits Plan

Key Milestones
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Success                                               Criteria
• Conceptual design of a lab-scale Air2Fuel system

suitable for a 2-month evaluation in Phase II;
• Conceptual design of a full-scale Air2Fuel

integrated DAC to methanol system for TEA/LCA;
• Preliminary TEA with pathway ≤ $800/tonne

MeOH
• Preliminary cradle-to-gate LCA for carbon neutral

methanol
• Community benefits planning derisks pathway to

deployment and commercialization of Air2Fuel.
• Submit Phase II proposal
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Risk Mitigation

Presenter Notes
Presentation Notes
success criteria are in line with us completing our tasks; and perceived risks have been mostly addressed



Progress and Current Status

• DAC Subsystem
• H2 Subsystem 
• CO2 to Fuel Subsystem
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DAC Sub system – Full scale design
Objective:

• DAC subsystem design to supply continuous stream of 176 kg/hr of CO2
to achieve 1000 tonne MeOH/yr production.

Methods:
• Adapt current carbon tree system design from Carbon Collect Inc. and
utilize experimental data from bench and pilot scale systems at ASU.

Key Parameters:
• DAC contactor size/number, sorbent capacity, cycle time/kinetics
• Heat recovery/exchange with MeOH and H2 subsystems
• Minimize/remove H2O, O2 and N2 contamination in crude CO2 product
• CO2 storage to buffer variable CO2 supply and constant CO2 demand

Status:
• Preliminary process flow diagram, mass and energy balances for TEA/LCA
• Ongoing analysis of CO2 purification technologies to remove O2 and N2

Carbon Collect Inc. carbon 
tree installed at ASU
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H2 Sub syst e m  –  N REL
Objective:

• Water electrolyzer design to supply 24 kg of H2 per
hour with a 90% capacity factor to achieve 1000 tonne 
MeOH/yr production.

Methods:
• Adapt NREL intellectual property to reduce CAPEX /
OPEX to enable integrated low-cost H2 production

Key Parameters:
• AC/DC power conversion
• Initial clean up and continuous water purity
• Limit H2 purity to required levels
• Gas ratio control to achieve 3H2 : 1CO2 for reactor

NREL Designed/Built 
1MW PEM Electrolyzer

Status:
• Preliminary process flow diagram, mass and
energy balances for TEA/LCA
• Evaluating H2 cost reduction methods
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C O 2 to  Fue l Sub syst e m –  Air C o m p a ny
Objective:

• CO2 to MeOH subsystem design to supply 1,000 tonne MeOH/yr
production (90% capacity factor).

Methods:
• Adapt existing proprietary and validated process simulation platform.
Energy integration with DAC.

Key Parameters:
• Per pass yield, catalyst lifetime
• DAC heat integration temperature and efficiency

Status:
• Preliminary process flow diagram, mass and energy balances for TEA/LCA
• Analysis of impact on CO2 impurities (O2, N2, H2O) on catalyst lifetime
• Jet, diesel via Project SynCE (Synthetic Fuels for Contested Environments)
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Fuel testing with SOCOM and DIU.

1 KMTA reactor will be comparable scale.



In it ia l TEA/ LC A –  N REL

*H2A = DOE Hydrogen Analysis Program

At 1,000 tonne/yr scale, 
labor costs are significant.

Evaluating 1) much larger 
scales and 2) automation 
(especially for DAC).

Key Assumptions:
1. Scale: 1,000 tonne

MeOH per year
2. Electrolyzer power:

50 kWh/kg H2
3. Electricity: $0.03/kWh
4. Labor: 1 supervisor, 1

tech, 3 shift operators
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DEIA –  ASU
•December 2023 - Examining Biases DEIA Workshop at Project Kickoff Meeting

Dispel the myth that “good” people don’t enact biases.

Practiced noticing, examining, and balancing out our biased behaviors.

•Spring 2024 – Project DEIA Onboarding Briefing and Quiz (Milestone 2.1.1)
Described CNCE's approach to DEIA

overview of DEIA concepts

>80% of the team passed quiz with score > 80%.
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C o m m unity Eng a g e . /  J ust ic e  4 0  (ASU)
• The "Fueling Tomorrow: Virtual Workshop on the Future

of Direct Air Capture for Clean Fuels" was held on May 2,
2024

• ~30 participants included representatives from DOE,
academic institutions (including engineers, social
scientists and humanists), utilities, local governments,
and industry and consulting groups working on green
methanol.

• Discussions were facilitated using Mural, with responses
written on the shared board and discussed in breakout
groups.

• Key insights on community benefits and workforce
implications will inform the development of the Phase II
community benefits plan.

• Completed Milestones 2.1.3.2 and 2.1.3.3

Centralized

Distributed

Fuels/Chemicals Energy Storage
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Presenter Notes
Presentation Notes
Centralized Fuels: shipyards, airports, feedstock for chemical manufacturingDistributed fuels/chemicals: 3D printing, remote vehicles (construction), wastewater denitrificationCentralized energy storage: long duration storage, direct use or conversion to hydrogen or methaneDistributed energy storage: small generators, microgrids, supplement/replace battery storage



Q ua lit y J o b s–  ASU
Workforce Needs Assessment
• Identify required jobs, associated skills, and associated 

educational pathways (Due September)
o This entails researching the required skills and education for 

jobs directly involved with the Air2Fuel process as well as 
those in adjacent industries such as methanol production.

• Identify existing jobs in the fossil fuel industry and the new jobs 
that will be replacing them with minimal retraining (Due Sept.)
o This entails identifying the specific essential skills associated 

with these jobs and comparing them with those required of 
the Air2Fuel process.

• Phase II Quality Jobs Plan, including scope of curricula to be 
developed and offered through ASU CareerCatalyst (Due Dec.)
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Le sso ns Le a rne d
• Oxygen and Nitrogen – DAC crude CO2 product O2

and N2 levels must be reduced to maximize
system lifetime and efficiency.

• Distributed Air2Fuel systems pose cost, safety
and equity concerns that make them unlikely to
be beneficial for individuals (e.g, rooftop solar),
but community-scale systems can support small
business models, and meet specific needs (net
zero, remote fuel, reduce air pollution).

• Project SynCE provides opportunities for DAC
integration in a different scenario – more
ruggedized, but higher-value fuel – less cost
sensitive to enable further R&D for scale.
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Sum m a ry
•Key findings

• Workshop: provided insights into risks and benefits of DAC to MeOH for 
energy storage vs fuels/chemicals and at centralized and distributed scales.
• Scale: Increasing scale well above 1,000 tonne MeOH per year is critical to 
ensure labor costs do not dominate in a human operated system.

•Future plans
• Complete full-scale DAC, H2, MeOH and integrated system design
• Conduct preliminary safety analysis
•Phase II: build bench scale Air2Fuel system and operate for ≥ 2 months

•Take away message
• Air2Fuel has an exceptional team (ASU, NREL, Air Co.) that builds on 
established technologies and guided by TEA/LCA and community benefits to 
help us be successful on this project.
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CO₂ to MeOH Subsystem

Air2Fuel System Design

Project Management

Community Benefits 
Plan (CBP)

Technoeconomic & 
Life Cycle Analysis

DOE NETL

Lauren Keeler
CBP Lead, CE & J40, ASU

Jennifer L.S. Chandler
DEIA, ASU

Jeremy Babendure
Quality Jobs, ASU

Joyisa Alvarez
Undergrad student, ASU

Charles Plath
Grad student, ASU

Gary Grim
TEA/LCA, NREL

Dwarak Ravikumar
LCA, ASU

Abishek Roy
Co-PI, NREL
Lisa Kreibe

Project Coordination, NREL
Gary Grim

Process Design, NREL
Alex Badgett

Process Analysis, NREL
Kevin Harrison

Site Demo Advisor, NREL
Daniel Ruddy

Catalyst/Process Advisor, NREL

Justin Flory
PI and Project Manager, ASU

DAC Subsystem

Matthew Green
Process Design, ASU

Emilianny Magalhaes 
Research Scientist, ASU

Edward Shin
Masters student, ASU

Carbon-Free H₂ 
Subsystem

Kevin Harrison
H2, NREL

Staff Sheehan
Co-PI, Catalyst Advisor, AirCo

Ouda Salem
Process Design, AirCo

Mahlet Garedew
Coordination/Reporting, AirCo

Pat Ward
Government Affairs, AirCo

Subtasks 1.4 & 1.5 

Task 2.0 

Subtask 1.8 

Subtasks 1.1, 1.2, 1.3, & 1.6 

Subtasks 1.7 & 1.11 

Subtask 1.10 

Subtask 1.9 

Enabling All 
Tasks

Lauren Taylor
Assistant PM, ASU
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Thank 
you! Lei Hong, PhD

Program Manger



Q ue st io ns?
Arizona State University

National Renewable Energy Laboratory
Air Company
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