

AIR2FIJFI 2024 FECM/ NETL

Project Review

Justin Flory, Ph.D.

Associate Director, Research Center for Negative Carbon Emissions Global Futures Laboratory & LightWorks Arizona State University <u>lustin.Flory@asu.edu</u> | 480-965-9938

Stafford Sheehan, Ph.D.

Co-Founder and Chief Technology Officer Air Company staff@aircompany.com | 774-644-4320

•Title: Mobile Air to Methanol (Air2Fuel) •Award #: DE-FE0032405 • Period of Performance: 12/20/23 – 12/19/24 •Funding: \$400k (DOE), \$100k (cost share) •Participants: ASU, NREL, Air Company

Aug. 8, 2024

AIR COMPANY

 ϕ : Overview

- Conceptual Design of
 - •1) bench scale/movable system
 - •2) 1000-tonne MeOH/yr system
- •Optimize heat recovery
- Integrate novel process components to reduce energy
- Integrate renewable energy
- •Community Benefits Planning

- DAC Subsystem
- H₂ Subsystem
- CO₂ to Fuel Subsystem

BAC Subsystem – ASU

MechanicalTree[™] Pilot plant

- Passive direct air capture system with 30 tonnes/year design capacity.
- Eliminate forced air making up 40-60% of energy & 50-70% of CAPEX.¹

• Lab scale Setups

- Sapling Kilogram scale temperature vacuum swing regenerator with in situ forced air capture or outdoor capture in Mechanical Tree.
 - Scale up 2-3x for Phase II system
- 561 L Wind tunnel Measure CO₂ adsorption vs wind speed and sorbent form factor.

1) J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Sorbent System," National Energy Technology Laboratory, Pittsburgh, PA, 2022. https://www.netl.doe.gov/energy-analysis/details?id=d5860604-fbc7-44bb-a756-76db47d8b85a

"Sapling" kilogram-scale DAC regeneration system

561 L wind tunnel for CO₂ sorption kinetics

Carbon Collect Inc. MechanicalTreeTM installed at ASU passively collects CO₂ delivered by the wind from any direction with a low pressure drop.

H₂ Subsystem – NREL

- **Pilot Scale**: 1MW balance of plant to support PEM performance and validation at the ESIF
- \leq 125 cells, \leq 4 k-Adc and 250 Vdc; safety systems; 60 °C; 3 MPa H₂
- Lab-scale: 2x25 kW, 100 kW, 3x150 kW electrolyzer systems
- **Relationships** with electrolyzer manufacturers (20 years)
- •Advanced Research for Integrated Energy Systems (**ARIES**)
- Lessons learned from daily unattended operations: H₂O & Power!

NREL mobile RD&D e-fuels platform

 Mobile (3 – 25kW) RD&D **facility** for H₂, CO₂ conversion, renewable natural gas (RNG),... RD&D – Behind the meter water & power!

1 MW Pilot-scale electrolyzer at NREL

NREL mobile RD&D e-fuels platform

CO₂ to Fuel Subsystem – Air Company

- **Capabilities**: catalysts and reactors for CO₂ to methanol, ethanol, gasoline, diesel fuel, and jet fuel
- **Methanol catalyst**: Proprietary formulation; very low side product formation
- **Purity**: ASTM, IMPCA grade, 99.9% selectivity after distillation
- **Pilot System**: 280 MTPA; thermal fluid heating/cooling; demo with power plant flue gas.
- Bench scale system: Clamshell furnace heat, 100-400 mL MeOH/day, sufficient for Phase II

Air Company pilot-scale CO₂ to fuels reactor system.

Air Company bench-scale CO₂ to fuels reactor system (for Phase II).

Techno- economic challenges and advantages

^{1.} Sarp, S., Hernandez, S.G., Chen, C. and Sheehan, S.W., 2021. Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock. *Joule*, *5*(1), pp.59-76.

Challenges:

- Cost
 - **DAC CO₂:** \$175-530/tonne
 - **Renewable H₂**: \$5,000-6,000/tonne
 - CO₂ to MeOH: \$1,250-2,000/tonne
- DAC: variable CO₂ supply, air contamination

Advantages

- Reduce CAPEX/OPEX via process intensification / heat integration
- Supply chain resilience (vs natural gas)
- Offtake for stranded renewables
- Co-locate production and usage
- Smaller scale distributed production

- Task 1.4 & 1.5 TEA/LCA
- Task 1.8 DAC subsystem design
- Task 1.9 H₂ subsystem design
- Task 1.10 CO₂ hydrogenator subsystem design
- Task 1.11 Integrated Air2Fuel system design
- Task 2.0 Community Benefits Plan

Task/	Milestone (M) or Deliverable	Planned	Verification method
Subtask	Title & Description	Completion	
		Date	
1.4.1, 1.5.1	Develop <u>initial</u> TEA and LCA of the	3/19/2024	Quarterly Report and/or
	full-scale Air2Fuel system		Proposal to Phase II
1.4.2, 1.5.2	Preliminary TEA with pathway to	12/19/2024	Quarterly Report and/or
	≤ \$800/tonne MeOH and LCA		Proposal to Phase II
1.7.1	Cost analysis of DAC impurity	9/19/2024	Quarterly Report and/or
	cleanup (CAPEX) vs efficiency losses		Proposal to Phase II
	(OPEX).		-
1.8.1, 1.9.1,	Conceptual design of the full-scale	9/19/2024	Quarterly Report and/or
1.10.1,	DAC, H ₂ , MeOH subsystems and		Proposal to Phase II
1.11.1	integrated Air2Fuel system		
1.8.2, 1.9.2,	Conceptual design of the lab-scale	12/19/2024	Quarterly Report and/or
1.10.2,	DAC, H ₂ , MeOH subsystems and		Proposal to Phase II
1.11.2	integrated Air2Fuel system		
2.0.1	R&D Community Benefits Plan	12/19/2024	Accepted by DOE.
	(CBP)		
2.1.1	Conduct DEIA Onboarding briefing	6/19/2024	Quarterly Report
	for project team members. Each team		
	member passes DEIA quiz with score		
	of ≥ 80%.		
2.1.2.2	Identify implicated communities from	9/19/2024	Quarterly Report
	stakeholder engagement workshop and	l	
	assemble data for preliminary EEJ		
2.1.3.2	Complete the stakeholder	4/30/2024	Quarterly Report
	engagement workshop		
2.1.3.3	Identify stakeholder	6/19/2024	Quarterly Report
	needs/perceptions related data and		
	explore potential future sites for		
	community visioning exercises		
2.1.4.1	Identify the required skills and	9/19/2024	Quarterly Report
	potential workforce development		
	curricula for Air2Fuel. Compare		
	NREL jobs model with industry jobs		
	input.		

Key Milestones

Success Criteria

F

- Conceptual design of a lab-scale Air2Fuel system suitable for a 2-month evaluation in Phase II;
- Conceptual design of a full-scale Air2Fuel integrated DAC to methanol system for TEA/LCA;
- Preliminary TEA with pathway \leq \$800/tonne MeOH
- Preliminary cradle-to-gate LCA for carbon neutral methanol
- Community benefits planning derisks pathway to deployment and commercialization of Air2Fuel.
- Submit Phase II proposal

Perceived

Cost/Schedule

To be named post associate takes a be hired.

Technical/Scop

O₂ impurities from may degrade the hydrogenator cata

N₂ impurities from may reduce CO₂ hydrogenator effi External Facto

Low interest in community engag workshop due to stage nature of pro

Risk Mitigation

	Risk Rating			Mitiantian /Decompose		
Risk	Probability	Impact	Overall	willigation/ Response		
	(Low, Med, High)			Strategy		
Risks:						
tdoctoral while to	Medium	High	Medium	Masters Chemical Engineering students will be		
				hired to assist with process analysis until the postdoc is onboarded.		
pe Risks:						
n DAC alyst.	High	Medium	Medium	Evaluate <u>a number of</u> commercially available options for reducing O ₂ to acceptable levels, such as cryogenic distillation or catalysts that reduce O ₂ to H ₂ O using available H ₂ .		
n DAC	High	Medium	Medium	Evaluate cost implications of efficiency losses vs air separation and purging		
r Risks						
gement early- oject.	Medium	Low	Medium	The workshops will focus on broader issues related to alternative fuels.		

Progress and Current Status

- DAC Subsystem
- H₂ Subsystem
- CO₂ to Fuel Subsystem

DAC Subsystem – Full scale design

Objective:

• DAC subsystem design to supply continuous stream of 176 kg/hr of CO₂ to achieve 1000 tonne MeOH/yr production.

Methods:

 Adapt current carbon tree system design from Carbon Collect Inc. and utilize experimental data from bench and pilot scale systems at ASU.

Key Parameters:

- DAC contactor size/number, sorbent capacity, cycle time/kinetics
- Heat recovery/exchange with MeOH and H₂ subsystems
- Minimize/remove H₂O, O₂ and N₂ contamination in crude CO₂ product
- CO₂ storage to buffer variable CO₂ supply and constant CO₂ demand
- **Status:**
 - Preliminary process flow diagram, mass and energy balances for TEA/LCA
 - Ongoing analysis of CO₂ purification technologies to remove O₂ and N₂

Carbon Collect Inc. carbon tree installed at ASU

Homes Homes

Objective:

• Water electrolyzer design to supply 24 kg of H₂ per hour with a 90% capacity factor to achieve 1000 tonne MeOH/yr production.

Methods:

 Adapt NREL intellectual property to reduce CAPEX / OPEX to enable integrated low-cost H₂ production

Key Parameters:

- AC/DC power conversion
- Initial clean up and continuous water purity
- Limit H₂ purity to required levels
- Gas ratio control to achieve 3H₂: 1CO₂ for reactor

Status:

- Preliminary process flow diagram, mass and energy balances for TEA/LCA

NREL Designed/Built 1MW PEM Electrolyzer

• Evaluating H₂ cost reduction methods

2 CO₂ to Fuel Subsystem – Air Company

Objective:

• CO₂ to MeOH subsystem design to supply 1,000 tonne MeOH/yr production (90% capacity factor).

Methods:

 Adapt existing proprietary and validated process simulation platform. Energy integration with DAC.

Key Parameters:

- Per pass yield, catalyst lifetime
- DAC heat integration temperature and efficiency

Status:

- Preliminary process flow diagram, mass and energy balances for TEA/LCA
- Analysis of impact on CO₂ impurities (O₂, N₂, H₂O) on catalyst lifetime
- Jet, diesel via Project SynCE (Synthetic Fuels for Contested Environments)

1 KMTA reactor will be comparable scale.

Fuel testing with SOCOM and DIU.

Initial TEA/ LCA – NREL

Pathway to \$800/tonne exists, will be reliant on low-cost electricity, minimal labor costs, and future CAPEX reductions

- 1. Scale: 1,000 tonne MeOH per year
- 2. Electrolyzer power: 50 kWh/kg H_2
- 3. Electricity: \$0.03/kWh
- 4. Labor: 1 supervisor, 1 tech, 3 shift operators

At 1,000 tonne/yr scale, labor costs are significant.

Evaluating 1) much larger scales and 2) automation (especially for DAC).

*H2A = DOE Hydrogen Analysis Program

•December 2023 - Examining Biases DEIA Workshop at Project Kickoff Meeting

- Dispel the myth that "good" people don't enact biases.
- Practiced noticing, examining, and balancing out our biased behaviors.

Spring 2024 – Project DEIA Onboarding Briefing and Quiz (Milestone 2.1.1) Described CNCE's approach to DEIA overview of DEIA concepts >80% of the team passed quiz with score > 80%.

Se Community Engage. / Justice 40 (ASU)

- The "Fueling Tomorrow: Virtual Workshop on the Future of Direct Air Capture for Clean Fuels" was held on May 2, 2024
- ~30 participants included representatives from DOE, academic institutions (including engineers, social scientists and humanists), utilities, local governments, and industry and consulting groups working on green methanol.
- Discussions were facilitated using Mural, with responses written on the shared board and discussed in breakout groups.
- Key insights on community benefits and workforce implications will inform the development of the Phase II community benefits plan.
- Completed Milestones 2.1.3.2 and 2.1.3.3

Centralized

Fuels/Chemicals

Energy Storage

Distributed

Workforce Needs Assessment

- **Identify required jobs**, associated skills, and associated educational pathways (Due September)
 - This entails researching the required skills and education for Ο jobs directly involved with the Air2Fuel process as well as those in adjacent industries such as methanol production.
- **Identify existing jobs in the fossil fuel industry** and the new jobs that will be replacing them with minimal retraining (Due Sept.)
 - This entails identifying the specific essential skills associated Ο with these jobs and comparing them with those required of the Air2Fuel process.
- **Phase II Quality Jobs Plan**, including scope of curricula to be developed and offered through ASU CareerCatalyst (Due Dec.)

El Lessons Le arne d

- Oxygen and Nitrogen DAC crude CO₂ product O₂ and N₂ levels must be reduced to maximize system lifetime and efficiency.
- **Distributed Air2Fuel systems** pose cost, safety and equity concerns that make them unlikely to be beneficial for individuals (e.g, rooftop solar), but community-scale systems can support small business models, and meet specific needs (net zero, remote fuel, reduce air pollution).
- **Project SynCE** provides opportunities for DAC integration in a different scenario – more ruggedized, but higher-value fuel – less cost sensitive to enable further R&D for scale.

\$400 per gallon gas to drive debate over cost of war in Afghanistan

•Key findings

- Workshop: provided insights into risks and benefits of DAC to MeOH for energy storage vs fuels/chemicals and at centralized and distributed scales.
- Scale: Increasing scale well above 1,000 tonne MeOH per year is critical to ensure labor costs do not dominate in a human operated system.

•Future plans

- Complete full-scale DAC, H₂, MeOH and integrated system design
- Conduct preliminary safety analysis
- •Phase II: build bench scale Air2Fuel system and operate for \geq 2 months

Take away message

• Air2Fuel has an exceptional team (ASU, NREL, Air Co.) that builds on established technologies and guided by TEA/LCA and community benefits to help us be successful on this project.

Thank you!

DOE NETL Lei Hong, PhD Program Manger

Project Management Subtasks 1.1, 1.2, 1.3, & 1.6

Justin Flory PI and Project Manager, ASU **Lauren Taylor** Assistant PM, ASU

DAC Subsystem Subtask 1.8

Matthew Green Process Design, ASU Emilianny Magalhaes Research Scientist, ASU Edward Shin

Masters student, ASU

Carbon-Free H₂ Subsystem Subtask 1.9

Kevin Harrison H₂, NREL

CO₂ to MeOH Subsystem Subtask 1.10

Staff Sheehan Co-PI, Catalyst Advisor, AirCo Ouda Salem Process Design, AirCo Mahlet Garedew Coordination/Reporting, AirCo Pat Ward Government Affairs, AirCo Air2Fuel System Design Subtasks 1.7 & 1.11

Abishek Roy Co-PI, NREL Lisa Kreibe Project Coordination, NREL Gary Grim Process Design, NREL Alex Badgett Process Analysis, NREL Kevin Harrison Site Demo Advisor, NREL Daniel Ruddy Catalyst/Process Advisor, NREL **Enabling All**

Tasks

Technoeconomic & Life Cycle Analysis Subtasks 1.4 & 1.5

Gary Grim TEA/LCA, NREL **Dwarak Ravikumar** LCA, ASU

Community Benefits Plan (CBP) Task 2.0

Lauren Keeler CBP Lead, CE & J40, ASU Jennifer L.S. Chandler DEIA, ASU Jeremy Babendure Quality Jobs, ASU Joyisa Alvarez Undergrad student, ASU Charles Plath Grad student, ASU

Questions?

Air Company

Enter the Factory

Arizona State University

National Renewable Energy Laboratory