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Project Overview

* Funding
* DOE $2,000,000; Cost Share $510,583
* Overall Project Performance Dates

 Original 10/01/2021-09/30/2024, three BPs
* Currently: with 12-month extension to Sep 2025, in BP3

* Project Participants

» TAMU: Drs. Susie Dai, Joe Zhou, Bruce McCarl, Stratos Pistikopoulos,
Chengcheng Fei

« WUSTL: Drs. Young-shin Jun, Yinjie Tang, Joshua Yuan, Benjamen Kumfer
* NCCC at Southern Company: Frank Morten, Tony Wu
AI‘M




Overall Project Objectives

The project integrates novel CO- capture/controlled release sorbent with a
breakthrough continuous algal cultivation system, assisted by hydrogel technology to
reduce media cost, fertilize the algae with controlled nutrient delivery.

Objective 1: Project management.

Objective 2: Integrates CO,, bicarbonate, and nutrient capture and delivery to the
low-cost harvest-empowered continuous algal cultivation system with ultra-high
productivity and CO, uptake plus valuable chemical bioproduct production. We also
advance algal strain, sorbent, and hydrogel technologies to enhance carbon capture
and yields of limonene, biomass, and glycogen.

Objective 3: Scale up the sorbent technology and integrate 1t with algal cultivation.

Objective 4: Test the prototype CACCU system with flue-gas coupled 100 L
photobioreactor (PBRs). AI‘M
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Sustainable co-production of imonene and biomass by semi-
continuous cultivation
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Record productivities and yields in limonene productivity

Sustainable biomass accumulation at about 1-2g/L/Day for a long period of time.

Machine learning informed semi- continuous cultivation.
Dai and Yuan’s groups@ TAMU AI‘M

Long et al., Nature Communications, 2022, 13:541




Amine Grafted Porous Polymer Network

Porous material Polymeric amine

Chemisorption via amine

moieties

¥ R-NH, — R-NHCO, + H*

¥ R-NH, + H,0 — R-NH,"+ HCO,"
¥ Ry-NH — R-NCO,"+ H*

¥ Ry-N+H,0 — R-NH*+ HCO,

Polymeric amine - modified porous material

e
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Physisorption via
the porous structure

l 100 120
Absolute Pressure (kPa)

CO, adsorption of PPN-151-DETA

Zhou’s group@TAMU




Mineral-seeded mineral hydrogel composites for nutrient delivery
and pH control Ca-Alg/CaP

Adding salts or P and Ca?

P-rich wastewater \ HPO .2- A
4

Struvite
mmp NH,*
(NH,MgPO,-6H,0) 4

HCO;" )
CO, capture/dissolution, N/
Calcium-Alginate Hydrogel
(Ca-Alg)

Mineral seed

Jun and Tang'’s groups@WUSTL

\ im, D and Jun, Y.-S., Green Chemistry 2018, 20 (2), 534-543.
Calcium phosphate, calcium carbonate, or ammonia-containing mineral seeds formed during
alginate crosslinking.

When placed into calcium phosphate/carbonate supersaturated solution, mineral seeds grow,
collecting and incorporating phosphate, bicarbonate, and ammonia-containing minerals. ATM




Translating process models into a process
systems engineering framework at scale Experimental Data
involves some critical steps Process parameters [3.1, 3.2]

1) Accurate modeling of process dynamics l
. . . Experimental Data
2) Reduced order approximation of nonlinear Strain specific [2.3]

d}-'namlcs Process parameters [2.1-2.3,2.5]

Process o] System
Modeling Modeling

Surrogate linear models can tame computational complexity Il ! I

Model Process Scenario

Linear programs can provide certificates of optimality Validation . Analvsi
pt. 1alysis

LCA/TEA

3) Design of control scheme [2.41—2.423] [3.3] [4.2: 4.3]

4) Formulation of a network design as a mixed
integer program (MIP)

MIPs can be optimized to multiple objectives
Tang, Pistikopoulos and McCarl's

groups@ TAMU&WUSTL

Network decisions can be modeled as binary variables

Scheduling can be integrated (multiscale approach)
5) Integration of lifecycle tools

OpenLCA data integration with MIP framework (MIP)




Technical Approach/Project Scope

Removal of Toxic

/ Compounds

CO2 sources Process Model
(Flue gas) Sorbents and Control

000000 I
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Progress
Tasks to be finished in BP2

e . _

Compare the process control Q10(03/31/2024)
model and machine learning

model and decide the strength

and applicability of each model.

Scale up to bench-scale at 2 Liter ©10(03/31/2024)
with algae biomass yield >1.8

g/L/D using engineered strains

and sorbent-released CO,

Re-design the sorbent to achieve = @10(03/31/2024)
the carbon capture capacity at
0.25 g CO,/g Sorbent.

Completed

Build the MAGMA model and
plan to submit the manuscript
in 2024.

Completed

Maximum biomass
productivity of 2g/L/D and
median productivity of 1.84
g/L/D

Completed

The new sorbent reached
0.7g CO, /g sorbent
adsorption capacity, and
reached the milestone.

e
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Evolution of The Integration System —Version 5 _ 2L
0 Customized a 2L flat panel PBR

( )

Cultivation vessel Temperature

with 2L capacity control U Real-time growth monitoring

O Enhanced peristaltic pump for

\ gas supply (higher flow rate)

sensor

Cyanobacterium cultivation
q with growth monitoring

Sorbent
Oil bath Maximum biomass productivity of 2g/L/D and

= Treanarad | median productivity of 1.84 g/L/D
Automatic CO,

releaging Gas pump system
\. J
[ S h ([ Data logging
.@' 1% H,SO, to e ’_ /
o L g Logged data:

7 remove
amine while

minimzing r— « CO, concentration

diseor = VRN .
. Amine ré‘?ﬁ%Y}Q? ) - Sorbent temperature
CO, monitor « Growth curve A|M




Evolution of The Integration System —Version 5 2L
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Q Trigger threshold set to 0.8%

0 Growth over 16h: median at 1.84 g/L and peak at 2.00
g/L, surpassing the Q10 milestone (1.8 g/L)

To be tested/optimized:

O Optimize the with CO, controlling system with capacity
to maintain CO, at higher concentration
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Physically Attached Amines in PPN-151-DETA

» Physically impregnated amines
» CA - noncovalent anchoring sites for alkylamines

H,
hexanes

HN

1

Diethylenetriamine
(DETA)

Cyanuric acid

(CA) PPN-151-DETA

Advantage: Easy recycle of PPN-151 backbone;
Disadvantage: Potential amine loss during application.




All Carbon PPN Scaffold

Reported data

Methanesulfonic O
acid i N on  Proposed amine
N~ tethering route
: R: Cl

H
R: N

PPN1-DETA

i PENT Absorption

i PPN Dasorption Fang, L. Zhou, H.-C. et al.,
Pub. No. US 20210230359A1
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PPN-KF3D

OPTIMIZED REACTION

v' High BET surface area
v' Cheap starting materials
v' Easy reaction

Porosity Optimization

@ Adsorption
O Desorption
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New progress

@ Adsorption
O Desorption

Sger = 1679 m2ig
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Nutrient delivery system
from mineral-hydrogel composites to bioreactor

Created with BioRender.com
1. Wastewater treatment 2. Nutrient release in media 3. Algal growth in
(pre-conditioning) bioreactor
Fresh mineral- 3 hours cycles
hydrogel composites

> > |
Cas(PO,)3(OH) [hydroxyapatite] ) o / \ Add

NH4MQ PO4 [Struvite] ‘
ﬁ Ca5(PO4)3(OH) [hydroxyapatite] m I CrObeS

NHdMg PO4 [Struvite]

P, N recovered Media with
composites | P. N

\/ * nutrients

Treated wastewater: Reuse the composites l AI‘M
Biomass i

cleaner water for P, N recovery




Release rates of mineral-hydrogel composites
Ca-Alg/CaP+Wollastonite

» Media

1. BG11 Media

2. 22 mM NaNO,
(same ionic strength as BG11)

3. BG11 Media without critical elements
(i.e., Ca, Mg, NH,, PO,)

Media was replaced by every 3 hours

N
o

-4+-BG11
NaNO3

-
(3))

| -m-BG11_wl/o critical elements

» Dose - 10 % (v of hydrogel precursor/v of media)

In each cycle, the composites released
around 5.0 ppm, 8.9 ppm, 15.1 ppm of P from
Ca-Alg/CaP+Wollastonite
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BG11 media (5 ppm) or significantly over it. 4 6
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Release rates of mineral-hydrogel composites
Ca-Alg/CaP+Struvite
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In each cycle, the composites released around 5 ppm, 9 ppm, and 13 ppm of P and 8.8 ppm, 10.7 ppm,

and 12.0 ppm of NH,-N.

P release in each cycle is equivalent to P (5 ppm) in BG11 media or higher.

We can utilize Ca-Alg/CaP+Struvite with sufficient nitrogen delivery for algal species preferring ammonium sources




Release rates of mineral-hydrogel composites
Ca-Alg/CaCO;,

« Calcium carbonate dissolution kinetic is
relatively faster than struvite and calcium
phosphate.

-4+-BG11
NaNO3
2-BG11_wl/o critical elements

Thus, the first cycle with 3 hours
released the highest calcium and
gradually decreased.

Total Ca released amount is around 200
ppm in BG 11 without critical elements.
It is equivalent to 305 ppm of
bicarbonate release.
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Fabrication of mineral-hydrogel composites
at 250 g scale

Task 2.2 Hydrogel advancement and cultivation integration

Achieve average dry weight percent of carbonate/ P/ N-containing
minerals -- mineral 40 wt.% at 50g scale by 6/30/2023->

Achieve average dry weight percent of carbonate/ P/ N-containing

minerals -- mineral 50 wt.% at 250g scale by 9/30/2024-> In Progress (80%
letion

o)

Ca-Alginate CaP+Struvite-

g
(Alg) Alg ﬁ




Fabrication of mineral-hydrogel composites
at 250 g scale

Hydrophobic

: | N\ N W
Needles tubing : \\l‘s‘tand mixer =
xor l m L W g

‘ do T
20 L Calcium bath Pump

e —————————————
——————————
——————————

125 L
Precursor
container




Release rates of mineral-hydrogel composites
: Large scale dissolution

Media - BG11 Media without critical elements (Ca, Mg, NH,, PO,)
Media was replaced by every 3 hours.

Dose - 10 % (v of hydrogel precursor/v of media)

Total volume of media: 7.5 L (150 times increase than bench scale)

6 10
-4-Ca-Alg/CaP+Wollastonite
| -@-Ca-Alg/CaP+Struvite

-4 Ca-Alg/CaP+Struvite
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The P and N released concentrations lower than those at the bench scale. Thus, they required more
extended time dissolution to reach a similar level of P and N in BG11.
It can be improved by changing the hydrogel fixation system to enhance the nutrient transformation.
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Microbe Action and Growth Modeling
Application (MAGMA)

Built with MATLAB

Simulation of bioreactors represented by
ordinary differential equation (ODE) systems

Nonlinear regression for fitting models to data
g




Home Components Environment Mass Transfer Reactions Solver Model Review Farameters Regression Plot Customization

Component| 52973 (Liquid Phase) | v |

Govemning Function:

e e L

mu_max*X_1*(II(K_I+1))-k_d*X_1

limonene (Liquid Phase)

M (Liguid Phase)

Set Piecewise Limits an Functions P (Liguid Phase)

Expression‘ C (Liguid Phase)

Equilibrium Hydrionium Concen...

If <= T”t 0

Equilibrium Hydroxide Concentr._.
pH

pOH

Light Intensity

Lower Bound Upper Bound Value Outside Bg

Helper Functions

Clear Console Show Console Stop Calculation




Fitting algal limonene model to
experimental data

Focus on effect of light availability on algal
biomass growth

Experimental data obtained from flat-panel
PBR trials

Assumes light is the only significantly growth-
limiting substrate in experimental trials

M



A simplified model is fit to experimental data to obtain kinetic parameters
describing the impact of light intensity on biomass growth

H D Average Light Intensity [ppf]:

s

o [ Toexp(=A- 1+ X;)dl
" - D

Biomass Concentration H:

Xy _ X ! kX
dt = UmaxA1 K, +1 dA1
Height (H)

\ . Limonene Concentration H:
Limonene L

dc,

| I
),
"~ Depth (D) dt = Y1, UmaxX1 - <KI n 1)

Width (W)

Al




Model fitting was successful, yielding 3
important kinetic parameters
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Further experiments can determine more kinetic parameters
describing the effect of other relevant factors on biomass
growth

Batch cultivation with single limiting substrate

* Impact of C, N, P nutrients on biomass growth rate
* Nutrient-to-biomass yields

Batch cultivation with light as limiting substrate

« Obtain accurate value for K; parameter (assumed in current model)

Goal: develop model useful for photobioreactor control and
bioprocess optimization




Predicting performance of photobioreactor for producing
Limonene from light and CO, via cyanobacteria

Simulating impact of light and
nutrient concentration on biomass

and product formation

* Biomass light shading
 Effect of PBR geometry on light availability
» Experiment-calibrated light modeling m
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Biochemical Reaction Functions for Algal PBR
SyStem forn =mix, 1,2,...,10:

o dX, Y N, P, COyp I, .
OMASS: = = Hmax4n Np+ Ky ) \By+ Kp)\COy + Kco, ) \In + K; dsn

o, 402, o (M P, €O,z n I,
2t cotmax®n\ N Ky )\ Py + Kp J\COpn + Ko, ) \In + K;

dCOZ,mix _
dt

dN, N, P, CO5 I,
Nitrogen:—— = —YnUmaxXn :
dt N, +Ky)\B, +Kp ) \COyp, + Kco, ) \In + K;

Phosph ap, — Y X Ny Fa CO2n In
osphorus: T PHmaxAn Np + Ky ) \Py + Kp J\COys + Kco, ) \In + K;

/D,ZL—W2
fODn fo Ipexp(—A - (w - X;,)) dh dw

Light: I, =
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Growth Limited By Nutrient Resources

Biomass Nitrogen
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Slower PFR Flowrate
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Lessons Learned

 Scale up: what you can plan and what you cannot
1. Cultivation scale-up
2. Sorbent synthesis
3. Hydrogel synthesis

* Modeling can be very helpful for scale up

e CO2 concentration




Future Plans

* Scale-up: 20-liter and 100-liter
cultivation/sorbent and hydrogel synthesis and

testing

« Work with NCCC for on-site CO2 conversion

» System integration
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Microbial engineering and
development of continuous algal
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Chemical Engineering
System modeling and TEA
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TAMU Agriculture
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Scale up and on=site: ey
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Life cycle analysis and
environmental analysis
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