Biomolecular Regulated Carbonation Pathway to Process Calcium-Rich Alkaline Industrial Waters Into Supplementary Cementitious Materials (BioCarb) DE-FE0032263

Jialai Wang

The University of Alabama, Tuscaloosa, AL

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

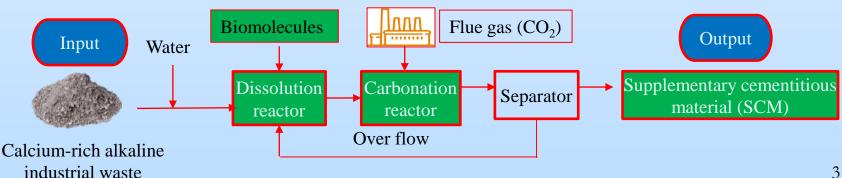
Project Overview

- Funding (DOE and Cost Share)
 - DOE: \$2,000,000.
 - Cost Share: \$500,002.
- Overall Project Performance Dates
 - 07/01/23-06/30/2025.
- Project Participants

PI Jialai Wang Co-PI Daqian Jiang

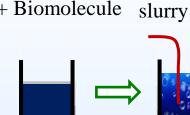
Co-PI Hongyu Zhou

Co-PI Rusty Sutterlin



Co-PI Zhe Huang

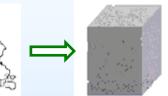
Overall Project Objective


- To test a lab-scale bio-regulated CO_2 mineralization (BioCarb) system that converts calcium-rich, alkaline industrial wastes (recycled cement fine (RCF), cement kiln dust (CKD), high calcium fly ash) into a carbon-negative supplementary cementitious materials (SCMs) and permanently stores CO_2 in the produced SCMs.
- The massive volume of calcium-rich alkaline industrial wastes offers one of ۲ the largest sinks for CO_2
 - Recycled concrete fines(RCF) (CO₂ uptake > 25%)
 - Class C fly ash (>15% CaO) ٠
 - Cement kiln dust (>50% CaO) ٠

BioCarb Process

Carbonated

Calcium-rich Mixing water industrial + Biomolecule waste

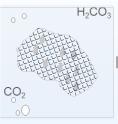

Carbonating

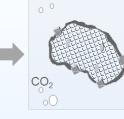
slurry (New SCM)

concrete: OPC, aggregate, etc. + CEMENT

The rest ingredients of

Concrete product

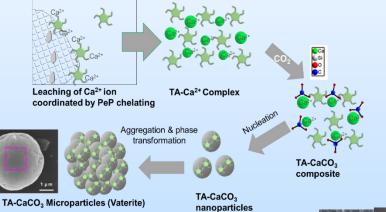

I: Carbonating calcium-rich industrial waste with the presence of the biomolecule (BioCarb)


II: Carbonated slurry is directly used as the supplementary cementitious material (SCM) without drying

 $3(3CaO \cdot SiO_2) + (3-x)CO_2 + yH_2O \rightarrow xCaO \cdot SiO_2 \cdot yH_2O + (3-x)CaCO_3$ $2(2CaO \cdot SiO_2) + (2-x)CO2 + yH_2O \rightarrow xCaO \cdot SiO_2 \cdot yH_2O + (2-x)CaCO_3$ $Ca(OH)_{2}(s)+CO_{2}(aq) \rightarrow CaCO_{3}(s)+H2O(aq)$ $(CaO)x(Al_2O_3)y(SiO_2)(H_2O)z(s)+xCO_2(aq) \rightarrow xCaCO_3(s)+(Al_2O_3)y(SiO_2)(H_2O)l(s)+(z-l)$ $H_2O(aq)$

- Sequester CO_2 in the carbonated waste
- Activate pozzolanic reactivity
- Disperse produced CaCO₃ particles

Regulating the formation of CaCO₃

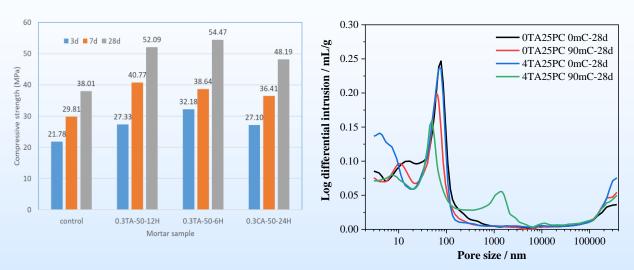


Reference RCF

Carbonation for 5 min

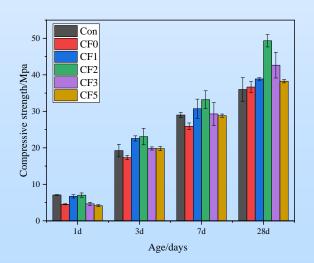
Carbonation for 30 min

Carbonation can be drastically improved with admixtures


Carbonation of RCF without molecular control:

• The formation of a dense calcite layer limits the Ca²⁺ leaching and CO₂

Carbonation of RCF with the biomolecular control:


- Chelating of tannic acid to Ca²⁺ to promote the carbonation
- Controlling the morphology and polymorph of CaCO₃
- Dispersing CaCO₃ particles

Previous Lab Testing

Initial success was achieved by carbonate cement using the bioCarb process.

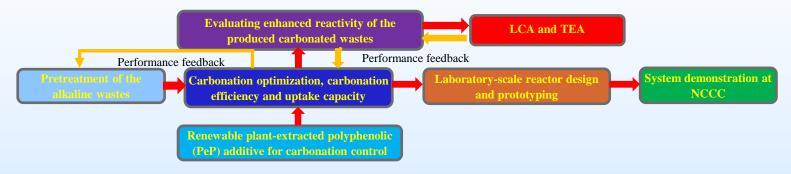
- Store over 20lb/yd3 CO2 in concrete
- Enhancing the strength of the concrete over 26%.
- It is critical to keep nanosize CaCO3 particles in the carbonated slurry

Carbonated recycled concrete fine with the bioCarb method exhibits high reactivity.

sampl e	OPC	RCF	Water	sand	ТА	Carbonation
Ctrl	31.05	3.45	16.75	50	0	No
CF0	31.05	3.45	16.75	50	0	
CF0.1	31.05	3.45	16.75	50	0.1%cement	
CF0.2	31.05	3.45	16.75	50	0.2%cement	Yes
CF0.3	31.05	3.45	16.75	50	0.3%cement	
CF0.5	31.05	3.45	16.75	50	0.5%cement	

Advantages and Challenges

Advantages:

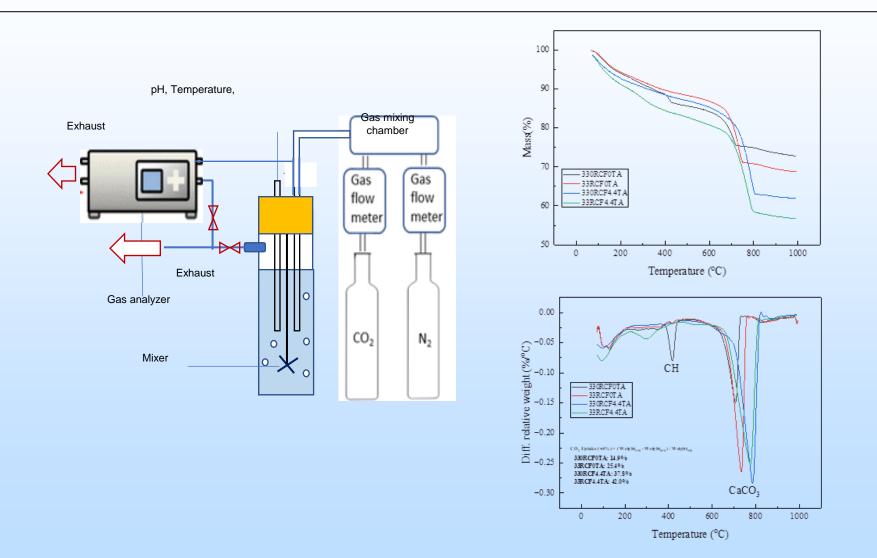

- More CO₂ uptake
- Higher reactivity of the resulting SCM
- Minimum processing energy.

Challenges:

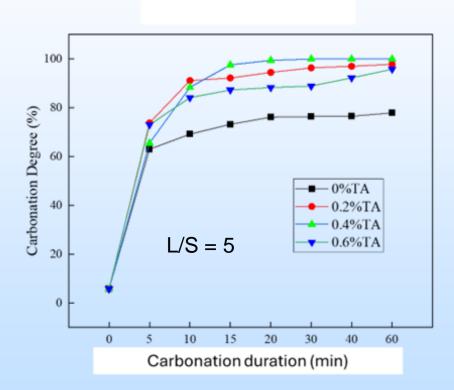
- Variation of feedstock
- Cost of biomolecules
- Loss of workability

Project Scope

• Work plan

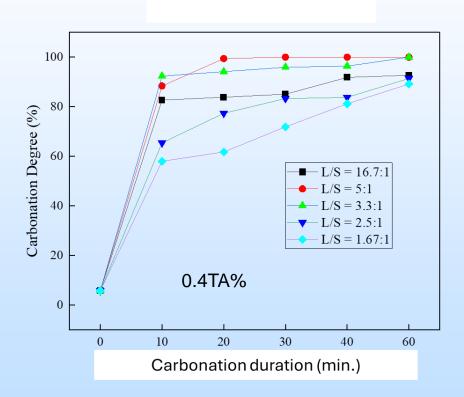

• Schedule

Key milestone	Criterion	Due Date
2	Extract of polyphenols at cost \$0.25/lb	18 months after award
4.1	Identify optimal carbonation conditions	12 months after award
4.2	Carbonation efficiency reaches 80% and 50% for RCF and high calcium fly ash.	12 months after award
5.2	Complete reactor prototyping > 10 kg/day CO ₂ uptake	18 months after award
7	30% less cement can be saved without strength reduction; Carbon-negative concrete > 2500psi.	21 months after award
9	Site demonstration, reaching TRL5.	24 months after the award
Success metric	1) CO ₂ fixation >10kg/day; 2) Reducing CO ₂ emission of concrete over 200 CO ₂ lb/yd ³ ; 3) Achieve TRL 4-5	24 months after the award

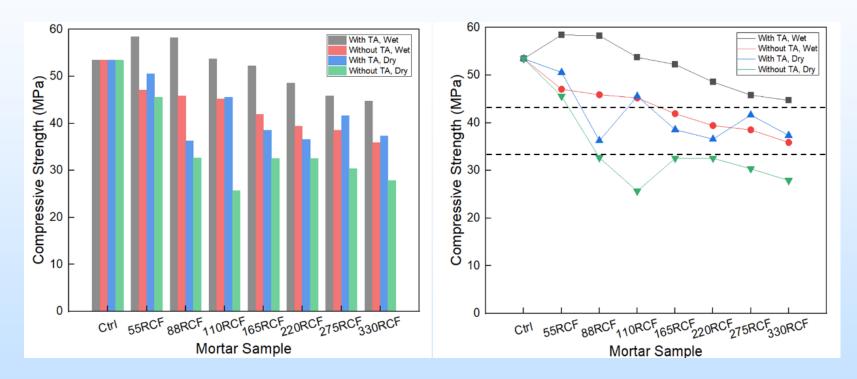

Plant-extracted Polyphenolic (PeP) Additive

a. Table 1	Pep additive produced by Sutterli	n Research LLC				
Sample	Quantity (grams)	Form				
Pecan Hull	3.85	dried				
Pecan Leaf	5.42	dried				
Pine Bark	4.2	dried				
Pecan Bark	5.07	dried				
Pecan Shell	13.37	dried				
Pine Straw	5.98	dried				
Oak Gall	51.15	dried				
Oak Bark	4.3	dried				
Walnut Shell	4.1	In Process				
Coffee	21.92	In Process				
Coffee Grounds	14.05	In Process				
Gall Powder	15.55	dried				
Теа	17.3	In process				
Tea Grounds	15.55	In process				
Tannic 1	17.35	dried				
Tannic 1 modified	15g in 37 ml	wet				
Tannic 2	17.28	dried				
Tannic Modified	15g in 37 ml	wet				
WalnaT Shell	Tea Grounds	Coffee Grounds				
Extract of Walnut Shells	Extract of Spent Tea Leaves	Extract of Spent Coffee				
Figure 1. Extractives of three biomass waste materials.						

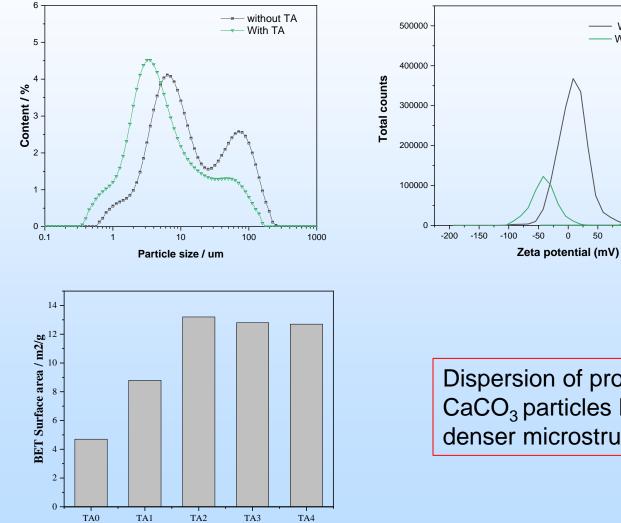
Carbonation Testing



Effect of Additive Dose


- i. Most carbonation can be completed at the first 15min.
- ii. TA can slightly slow down the carbonation.
- iii. Without TA, more than 20% of RCF can't be carbonated.
- iv. Higher dose of TA can increase the carbonation degree of the RCF.
- v. However, too much TA may inversely affect the carbonation.
- vi. With TA, RCF can be almost completely carbonated.

Effect of L/S ratio


- Less time is needed to complete carbonation with higher L/S ratio.
- ii. TA affects the maximum carbonation degree of the RCF.
- iii. An optimal dose of TA exists for each different L/S ratio. Under such ratio, maximum carbonation degree can be obtained at a short period of carbonation.

Why Carbonated Slurry?

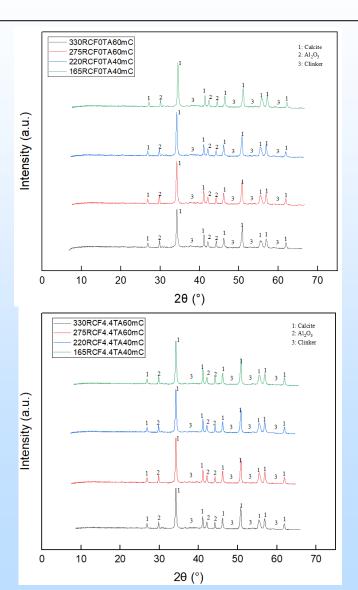
- The presence of TA during carbonation significantly enhances the compressive strengths of cement mortars.
- Directly adding the carbonated RCF slurry without drying drastically enhances the compressive strength of the cement mortar.

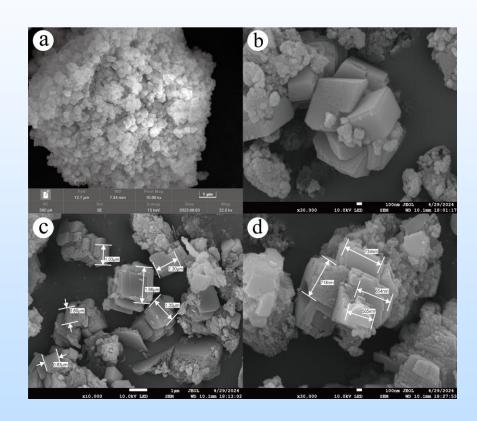
Dispersion of CaCO₃

Dispersion of produced CaCO₃ particles leads to denser microstructure.

50

100


150


200

Without TA

With TA

Carbonation Products

Lessons Learned

- Workability of concrete can be reduced by the carbonation. This can be mitigated by using water reducer.
- Over carbonation may reduce the performance of the produced concrete.
- A low L/S ratio reduces water demand; however, a longer carbonation duration is needed.

Plans for future testing/commercialization

- a. Testing the efficacy of PeP
- b. Co-Carbonation of class C fly ash and cement kiln dust
- c. Scale up to absorb at $10 \text{kg CO}_2/\text{day}$
- d. 30% replacement of OPC with the SCM without loss of strength.
- e. Demonstration at NCCC.
- f. Commercialization is undergoing supported by an NSF ART project.

Summary

- Biomolecules can promote CO₂ uptake of calcium-rich industrial wastes.
- Recycled concrete fines can be completely carbonated by the BioCarb process.
- Most carbonation can be completed within 30 min in aqueous condition.
- Higher strength of cement mortars is reached by wet carbonated slurry.
- Recycled concrete fine provides sustainable supply of Ca for CO₂ mineralization.