

# Carbon Capture Machine (CCM)

2024 FECM/NETL Carbon Management Research Project Review Meeting *August 5 – 9, 2024* 

#### Award DE-FE00032399

Lance A. Scott Chief Executive Officer **Raj Mosali** Principal Investigator

Revision: August 7, 2024





#### **Project Overview**

Department of Energy FECM/NETL Award DE-FE00032399

#### Biomass Ash Valorization by CO<sub>2</sub> Capture for Nano-Sized ACC and Use in Low Carbon Cement

#### Funding

- DOE \$1,364,279
- Calcify (CCM) \$352,463 (20.53%)

#### **Overall Project Performance Dates**

- Project Start Date 11/01/2023
- 20 kgCO<sub>2</sub>/day prototype 5/10/2025
- Production of Performant Cement with ACC 7/10/2025
- Project Completion Date 10/31/2025





#### **Project Overview**

Department of Energy FECM/NETL Award DE-FE00032399

#### **Project Participants**

- Raj Mosali Principal Investigator
- Lance A. Scott Project Director

#### **Overall Project Objectives**

- Design and Optimization of Biomass Ash Alkalinity Recovery Unit
- Identification, Characterization, and multi-criteria informed decision on optimal waste sources.
- Design and build 20 kgCO $_2$ /day carbon capture prototype.

**Milestone:** Continuous CO<sub>2</sub> capture using biomass ash leachate and continuous synthesis of CaCO<sub>3</sub>.

• Optimization of precipitation conditions for amorphous calcium carbonate stabilization and production of performant cement. Optimize full CO<sub>2</sub> capture and mineralization process.

Milestone: Production of performant cement with ACC.



Department of Energy FECM/NETL Award DE-FE00032399

#### Preliminary process overview

- Biomass ash leaching using a solvent such as water.
- Alkali extraction from other available waste sources (e.g., Refuse-derived fuel fly ash, Municipal solid waste incineration (MSWI) bottom ash, Mine tailings, Mine gangue, Steel slag, Cement Dust, Coal ash, Industrial waste clinker, Galvanic sewage sludge, etc.).
- Assess alternate sources for alkali production, e.g., Electrolysis, Electro-Chemical Activation (ECA)
- CO2 from flue absorbed using leached water or related dilute alkali source.
- Use concentrated brine to produce ACC.
- Assess a variety of brine sources including aqueous Calcium Chloride (CaCl<sub>2</sub>), Industrial waste brines, Geologic / Connate brines, Concentrated seawater, Hybrid mixtures.





Department of Energy FECM/NETL Award DE-FE00032399

#### Preliminary process overview





Department of Energy FECM/NETL Award DE-FE00032399

CCM has developed a prototype carbon capture & utilization (CCU) pilot facility in Ohio that will serve as the basis for the next generation system to process up to 20 kgCO<sub>2</sub>/day to produce amorphous calcium carbonate (CaCO<sub>3</sub>).





Department of Energy FECM/NETL Award DE-FE00032399

Scanning Electron Microscope (SEM) micrograph of amorphous calcium carbonate formed with CCM proprietary processes



SEM micrograph of amorphous calcium carbonate formed by rapid precipitation and examined shortly after precipitation, ca 5 minutes.

Source: Formation of scawtite, Ca7(Si6O18)CO3·2H2O, and tilleyite, Ca5Si2O7(CO3)2, in Portland cements with lowered carbon footprint

L.J. McDonald\*, W. Afzal\* and F.P. Glasser\*\* \* University of Aberdeen, School of Engineering, Aberdeen, Scotland \*\*CCM UK, 28 Albyn Place Aberdeen, Scotland, UK



Department of Energy FECM/NETL Award DE-FE00032399

#### Advantages of CCM technology



The CCM process is termed CAPCON because it CAPtures gaseous CO<sub>2</sub> from process flue gas and CONverts it to stable and insoluble mineral solids.



The process operates at ambient temperature and pressure and does not require solvents other than water.

The proprietary sequential precipitation process operates continuously and efficiently yields valuable and saleable products.



Depleted brine, the third output, can be disposed of, re-injected to the ground, or post-processed for other uses.

The absorption of CO<sub>2</sub> in dilute aqueous alkali and precipitation of carbonates are wellunderstood processes that present no safety-related concerns



A CCM differentiator is the benign source of  $Ca_2$ + cations from brine, as opposed to  $CO_2$ -intensive, hazardous calcination of limestone.



Department of Energy FECM/NETL Award DE-FE00032399

#### Advantages of CCM technology

- a. The process is highly carbon-negative, generating negative emissions between -825 to -881 kgCO<sub>2</sub> sequestered/ton of CO<sub>2</sub> captured (when sourcing alkali feedstock from waste materials).
- b. The goal is to produce a form of ACC that is chemically reactive in concrete, producing a stronger result than traditional CaCO<sub>3</sub> commonly added as a supplemental cementitious material (SCM).
- c. The proposed CO<sub>2</sub> capture and mineralization strategy has been previously demonstrated to TRL4 using dilute NaOH as the alkalinity source.
- d. The CCM methodology produces a wide variety of CaCO<sub>3</sub> morphologies with unique characteristics that can be tailored to specific applications.
- e. The CCM Techno-economic analysis (TEA) is extremely compelling when input feedstock is sources from waste materials, connate brines, or seawater.
- f. The CCM technology is emission-agnostic and can be deployed across a wide range of industries for both retrofit and new installations.



Department of Energy FECM/NETL Award DE-FE00032399

#### Challenges of CCM technology

- a. Large and replenishing sources of waste ash can be difficult to identify.
- b. The uniformity of chemical composition of waste ash may be inconsistent, and evaluation testing is paramount for each feedstock source.
- c. Water usage and reclamation can be challenging and energy intensive.
- d. Identifying the most desirable morphologies for specific applications to ensure that market pricing provides a compelling TEA.
- e. Sources for waste ash and brines differ considerably based on geographic locations, so standardized characterization testing, and a flexible business model are required.



# Technical Approach / Project Scope

Department of Energy FECM/NETL Award DE-FE00032399

| Task/Subtask | Milestone Title &<br>Description                                                                                                                 | Planned<br>Completion<br>Date | Verification Method                                                                                                                                            |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1.1          | Updated Project<br>Management plan                                                                                                               | 12/06/2023                    | Updated document provided<br>to DOE                                                                                                                            |  |  |  |  |
| 1.2          | Technology Maturation<br>Plan                                                                                                                    | 2/10/2024                     | Document provided to DOE                                                                                                                                       |  |  |  |  |
| 2            | Continuous, selective,<br>and efficient biomass ash<br>alkalinity recovery                                                                       | 11/10/2024                    | 24 hours continuous flow<br>of biomass ash leachate<br>with pH > 12                                                                                            |  |  |  |  |
| 3.1-3.2      | Continuous CO <sub>2</sub> capture using<br>biomass ash leachate and<br>continuous synthesis of<br>CaCO <sub>3</sub> with 20 kg/day<br>prototype | 05/10/2025                    | 24 hours continuous CO <sub>2</sub><br>95% capture at 20kg/day<br>flow and precipitation as<br>CaCO <sub>3</sub>                                               |  |  |  |  |
| 3.3          | Production of performant<br>cement with<br>ACC                                                                                                   | 7/10/25                       | ASTM measurements at 28<br>days exceed Portland<br>Cement control                                                                                              |  |  |  |  |
| 4.1          | Final TEA                                                                                                                                        | 10/10/2025                    | TEA results file and report<br>file provided to DOE                                                                                                            |  |  |  |  |
| 4.2          | LCA                                                                                                                                              | 10/10/2025                    | OpenLCA project file, LCA<br>discussion report, LCA<br>summary graphics, NETL<br>CO2U OpenLCA Results<br>tool file and report template<br>file provided to DOE |  |  |  |  |
| 5.1          | Environmental Justice<br>Questionnaire                                                                                                           | 10/31/2025                    | Document provided to DOE                                                                                                                                       |  |  |  |  |



# Technical Approach / Project Scope

Department of Energy FECM/NETL Award DE-FE00032399

Success Criteria:

- a. Identify and classify useable ash content
- b. 24-hour continuous flow of biomass ash leachate with pH>12
- c. 24-hour continuous  $CO_2$  95% capture at 20 kg $CO_2$ /day flow and precipitation as  $CaCO_3$
- d. ASTM measurements at 28 days exceed Portland Cement control



# Technical Approach / Project Scope

Department of Energy FECM/NETL Award DE-FE00032399

#### Project risks and mitigation strategies

- a. Finding suitable sources for waster materials.
- b. Finding (or quickly building) adequate testing capabilities.
- c. Recruitment of talented workforce on short notice.



Department of Energy FECM/NETL Award DE-FE00032399

#### Accomplishments to date:

- a. Leaching process preliminary research results:
  - i. Tested the leaching process using distilled water and tap water.
  - ii. Tested few samples of Ash from a coal fired power plant
  - iii. Average pH tested around 11.8
  - iv. Preliminary build of Leaching vessel
  - v. Identified the separation techniques for separating leachate from solids
- b. Used our existing research pilot system in-kind to perform preliminary methodology validation and refinement for the FECM/NETL 20 kgCO<sub>2</sub>/day carbon capture unit to be built later this year.
- c. Identified all equipment and instruments for the process to accomplish 20 kgCO $_2$ /day size.



Department of Energy FECM/NETL Award DE-FE00032399

d. Secured a contractual relationship with Lawrence Technological University's (LTU) esteemed <u>Nabil Grace Center for</u> <u>Innovative Materials Research (CIMR)</u>





Department of Energy FECM/NETL Award DE-FE00032399

#### Accomplishments to date (*continued*):

e. Evaluated performance characteristics of various electrolysis and electro-chemical activation technologies.





Department of Energy FECM/NETL Award DE-FE00032399

#### Accomplishments to date (*continued*):

f. First preliminary batches run for functional validation with satisfactory production of nanoscale CaCO<sub>3</sub>.





Department of Energy FECM/NETL Award DE-FE00032399

#### Accomplishments to date (*continued*):

g. Desk research of available geologic salt cavern and brine mapping.



https://www.sciencedirect.com/topics/engineering/salt-cavern



Department of Energy FECM/NETL Award DE-FE00032399

#### Accomplishments to date (*continued*):

g. Desk research of available geologic salt cavern and brine mapping.



Geophysical Research Letters, Volume: 45, Issue: 10, Pages: 4851-4858, First published: 08 May 2018, DOI: (10.1029/2018GL078409)

http://water.usgs.gov/nawqa/studies/praq/images/USAaquiferMAP11\_17.pdf



Department of Energy FECM/NETL Award DE-FE00032399

#### Accomplishments to date (continued):

g. Desk research of available geologic salt cavern and brine mapping.



Geophysical Research Letters, Volume: 45, Issue: 10, Pages: 4851-4858, First published: 08 May 2018, DOI: (10.1029/2018GL078409)

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078409



Department of Energy FECM/NETL Award DE-FE00032399

#### Accomplishments to date (continued):

g. Desk research of available geologic salt cavern and brine mapping.



532 Table 3: Results for the determination of cations by ICP-MS.

| SAMPLE ID  | sampling<br>method | Li<br>ma/L | B<br>ma/L | Na<br>mg/L | Mg<br>ma/L | K<br>ma/L | Ca<br>mg/L | Fe<br>ma/L | Mn<br>mg/L | Zn<br>ma/L | Cu<br>ma/L | Rb<br>ma/L | Sr<br>ma/L | Ba<br>ma/L | Pb<br>ma/L |
|------------|--------------------|------------|-----------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 12-CIT-100 | gas lift           | 3.1        | 6         | 5630       | 124        | 9400      | 2830       | 28         | 13         | 0.97       | 3.5        | 1,1        | 125        | 4          | 0.31       |
| 12-CIT-101 | gas lift           | 11         | 47        | 45090      | 2220       | 645       | 24600      | 155        | 56         | 49         | <0.3**     | 1.8        | 932        | 16         | 4.4        |
| 12-CIT-102 | gas lift           | 11         | 48        | 45600      | 2280       | 647       | 24900      | 136        | 57         | 50         | <0.3**     | 1.8        | 947        | 15         | 1.1        |
| 12-CIT-103 | gas lift           | 11         | 47        | 45800      | 2150       | 650       | 25000      | 118        | 57         | 50         | <0.2*      | 1.8        | 952        | 17         | 0.66       |
| 12-CIT-104 | gas lift           | 11         | 46        | 47000      | 2200       | 672       | 26300      | 107        | 57         | 50         | <0.3**     | 1.8        | 982        | 17         | 0.53       |
| 12-CIT-105 | gas lift           | 11         | 48        | 45900      | 2180       | 648       | 25500      | 102        | 57         | 51         | <0.2*      | 1.8        | 974        | 17         | 0.35       |
| 12-CIT-106 | ESP                | 11         | 45        | 44500      | 2060       | 676       | 23900      | 299        | 56         | 56         | <0.2*      | 1.8        | 921        | 16         | 0.29       |
| 12-CIT-107 | ESP                | 11         | 45        | 44300      | 1970       | 667       | 23500      | 309        | 51         | 51         | <0.2*      | 1.8        | 907        | 16         | 0.19       |
| 12-CIT-108 | ESP                | 11         | 47        | 46900      | 2090       | 646       | 24900      | 243        | 56         | 54         | <0.3**     | 1.9        | 957        | 17         | 0.61       |
| 12-CIT-109 | VS                 | 12         | 48        | 46800      | 2200       | 661       | 25000      | 73         | 57         | 53         | 1.8        | 1.8        | 959        | 17         | 0.54       |
| 12-CIT-110 | VS                 | 11         | 47        | 46300      | 2100       | 649       | 25300      | 101        | 57         | 53         | 0.79       | 1.8        | 962        | 17         | 0.52       |
| 12-CIT-220 | gas lift           | 11         | 45        | 48000      | 2070       | 679       | 25500      | 116        | 57         | 52         | <0.2*      | 1.8        | 986        | 17         | 1.8        |
| 12-CIT-221 | gas lift           | 11         | 48        | 48400      | 2150       | 679       | 25700      | 99         | 58         | 54         | <0.3**     | 1.9        | 992        | 17         | 0.51       |
| 12-CIT-222 | U-tube             | 11         | 48        | 47200      | 2210       | 713       | 25200      | 140        | 59         | 55         | 8.0        | 1.8        | 984        | 17         | 7.3        |
| 12-CIT-223 | VS                 | 11         | 47        | 48800      | 2140       | 690       | 23500      | 129        | 56         | 53         | 4.4        | 1.8        | 905        | 17         | 9.6        |
| 12-CIT-224 | U-tube             | 10         | 40        | 41800      | 1730       | 985       | 23000      | 101        | 44         | 38         | 0.26       | 1.7        | 882        | 15         | 0.77       |
| 12-CIT-225 | VS                 | 11         | 47        | 48000      | 2110       | 685       | 25300      | 115        | 56         | 53         | 1.7        | 1.8        | 990        | 17         | 9.0        |
| 13-CIT-103 | U-tube             | 9.7        | 47        | 47200      | 2240       | 882       | 23800      | 311        | 59         | 54         | 1.0        | 1.9        | 970        | 10         | 0.9        |
| 13-CIT-105 | U-tube             | 9.5        | 48        | 45700      | 2200       | 814       | 23800      | 271        | 59         | 53         | 0.8        | 1.9        | 959        | 15         | 1.3        |

533 534 535

\*less than limit of detection (MDL)
\*\*less than limit of quantitation (LOQ)

536 Values in italics are not within the range of lowest to highest calibration standards

Mississippi Valley-type Mineralization in the US Mid-Continent



# Summary of Community Benefits / Societal Considerations

Department of Energy FECM/NETL Award DE-FE00032399

(CB/SCI) and Impacts (if applicable\*)

- For the proposed project, our public engagement strategy will include not only the economically active, but also members of underserved and disadvantaged communities (DAC) including individuals living in geographic proximity to the proposed project activity, geographically dispersed sets of individuals (such as migrant workers or Native Americans) where either type of group experiences common conditions, young adults, and the elderly. This engagement strategy will be guided by the principles of accountability, transparency, and collaboration, and we will endeavor to utilize the recently released Climate and Economic Justice Screening Tool (CEJST) BETA resource provided by the White House Council on Environmental Quality (CEQ) that aims to help identify DACs as part of the Justice40 Initiative.
- Milestones in the project will be agreed with public engagement experts representing each of the project partners and local community representatives. Examples of engagement activities will include working with schools and community colleges, faith groups, and economic development agencies aiming to support indigenous populations and minority groups.
- Underserved communities have been unfairly impacted by climate change and the environmental consequences of industry. For example, petrochemical industries, power plants, landfills, or otherwise environmentally destructive industries are often located in areas of underserved, low-income communities, making residents more susceptible to poor air quality and negative health disparities. Furthermore, sociodemographic factors contribute to worsening health disparities from air pollution in low-income communities.
- CCM's project proposes to dramatically reduce air and landfill pollution from biomass or waste combustion sources or from cement kilns. Specifically, the use of a scrubber will prevent the release of carbon dioxide, as well as SOx, NOx, and particulate emissions from combustion and incineration sources. Furthermore, the prevention of a fraction of biomass ash from reaching landfills will mitigate the possibility of ash components from entering soil and water sources. Poor families and people of color are also more likely to be impacted by the global impacts of climate change, such as more frequent extreme weather events, increased food and water prices due to droughts, or rising sea levels. By mitigating carbon emissions, the proposed project works to indirectly mitigate impacts most severely felt by disadvantaged communities.



Funding in Low to Moderate Income (LMI) Communities



https://www.stlouisfed.org/community-development/data-tools/community-investment-explorer/data-tool



Funding in Low to Moderate Income (LMI) Communities





Funding in Communities of Color



https://www.stlouisfed.org/community-development/data-tools/community-investment-explorer/data-tool



Funding in Communities of Color





#### DOE NETL Award DE-FE0032399

Diversity, Equity, and Inclusion Plan – U.S. Opportunity Zones

https://opportunityzones.hud.gov/resources/map





#### DOE NETL Award DE-FE0032399

Diversity, Equity, and Inclusion Plan – Connecticut Opportunity Zones

https://opportunityzones.hud.gov/resources/map





#### DOE NETL Award DE-FE0032399







#### DOE NETL Award DE-FE0032399





3

4

## DOE NETL Award DE-FE0032399





#### DOE NETL Award DE-FE0032399





#### DOE NETL Award DE-FE0032399





#### Lessons Learned

Department of Energy FECM/NETL Award DE-FE00032399

Discuss lessons learned and mitigation strategies employed during technology development and project execution

- a. Leave adequate time for staffing.
- b. Leave adequate time for equipment purchase and lead time.
- c. Work with DOE Contract team to set a target launch date.









# Plans for future testing/development/commercialization

Department of Energy FECM/NETL Award DE-FE00032399

Plans for future testing/development/commercialization:

- a. U.S. Department of Energy DE-FOA-00002804 Award DE-EE00010852.
- b. U.S. Department of Energy Office of Clean Energy Deployment (OCED) opportunities.
- c. Commercial scale modularized and containerized solution.





# Plans for future testing/development/commercialization

Department of Energy FECM/NETL Award DE-FE00032399



Chemical storage





#### Carbon Capture Machine (CCM)

- Scalable containerized design for a wide range of engine/furnace sizes
- Emission "agnostic" natural gas, biogas, diesel, coal, etc.
- Produces a wide range of CaCO<sub>3</sub> or MgCO<sub>3</sub> carbonates for a variety of applications
- Purified NaCl brine output is desirable for numerous industrial applications









# Appendix

Department of Energy FECM/NETL Award DE-FE00032399



#### **CCM Organizational Structure**

Cross-functional International Matrix Organization with 'hands on' Board of Advisors





#### Gantt Chart

#### Department of Energy FECM/NETL Award DE-FE00032399

| Tosk # | Subtack | t # Task Nama                                                                                                           |   |    | 2  | 2024 |    | 2025 |    |    |    |  |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------|---|----|----|------|----|------|----|----|----|--|
|        |         | 1 ask Name                                                                                                              |   | Q1 | Q2 | Q3   | Q4 | Q1   | Q2 | Q3 | Q4 |  |
| 1.0    |         | Project Management and Planning                                                                                         |   |    |    |      |    |      |    |    |    |  |
|        | 1.1     | Project Management Plan Milestone                                                                                       | * |    |    |      |    |      |    |    |    |  |
|        | 1.2     | Technology Maturation Plan Milestone                                                                                    |   | *  |    |      |    |      |    |    |    |  |
|        |         |                                                                                                                         |   |    |    |      |    |      |    |    |    |  |
| 2.0    |         | Design and Optimization of Biomass Ash Alkalinity Recovery Unit Identification,                                         |   |    |    |      |    |      |    |    |    |  |
|        | 2.1     | Characterization, and multi-criteria informed decision on optimal waste sources                                         |   |    |    |      |    |      |    |    |    |  |
|        |         | Design, build, and proof of concept of flow extraction unit                                                             |   |    |    |      |    |      |    |    |    |  |
|        | 2.2     |                                                                                                                         |   |    |    |      |    |      |    |    |    |  |
|        | 2.3     | Optimization of flow extraction of Na <sub>2</sub> O and K <sub>2</sub> O                                               |   |    |    |      | *  |      |    |    |    |  |
|        |         | Milestone: Continuous, selective. and efficient biomass ash alkalinity recovery                                         |   |    |    |      |    |      |    |    |    |  |
|        |         | Decimental ball decimental 2015 CO2/Jacons (characteristic for some base of biographics)                                |   |    |    |      |    |      |    |    |    |  |
| 3.0    |         | Design and build integrated 20kg CO2/day prototype for amorphous calcium                                                |   |    |    |      |    |      |    |    |    |  |
|        | 1       | Carbonate production from fue gas using biomass asin and desamation of mes                                              |   |    |    |      |    |      |    |    |    |  |
|        | 1.      | Survey and size separate and integrated units of aikainity                                                              |   |    |    |      |    |      |    |    |    |  |
|        | 2.      | Source and build 20 kg CO2/day prototype<br>Milestanet Continuous CO2 conture using biomess ash leachets and continuous |   |    |    |      |    |      |    |    |    |  |
|        |         | synthesis of CoCO2 with 20 kg/day, prototypo                                                                            |   |    |    |      |    |      | *  |    |    |  |
|        | 2       | Optimization of presidiation conditions for amorphous calcium carbonate stabilization                                   |   |    |    |      |    |      |    |    |    |  |
|        | 5.      | and production of performant coment                                                                                     |   |    |    |      |    |      |    |    |    |  |
|        | 4       | Ontimize full CO2 conture and mineralization process                                                                    |   |    |    |      |    |      |    | *  |    |  |
|        | 4.      | Milesteres Dreduction of regenerat content with ACC                                                                     |   |    |    |      |    |      |    | ~  |    |  |
|        |         | Milestone: Production of performant cement with ACC                                                                     |   |    |    |      |    |      |    |    |    |  |
| 1.     |         | Perform a detailed assessment of economic and environmental impacts of                                                  |   |    |    |      |    |      |    |    |    |  |
|        |         | amorphous calcium carbonate production from flue gas using biomass ash and                                              |   |    |    |      |    |      |    |    |    |  |
|        |         | desalination brines                                                                                                     |   |    |    |      |    |      |    |    |    |  |
|        | 2.      | Techno-economic analysis (TEA) - Final Milestone                                                                        |   |    |    |      |    |      |    |    | *  |  |
|        | 3.      | Life Cycle Assessment (LCA) Milestone                                                                                   |   |    |    |      |    |      |    |    | *  |  |
|        |         | • • • • •                                                                                                               |   |    |    |      |    |      |    |    |    |  |
| 5.0    |         | Community Engagement, Inclusion and Diversity                                                                           |   |    |    |      |    |      |    |    |    |  |
|        | 1.      | Environmental Justice Questionnaire Milestone                                                                           |   |    |    |      |    |      |    |    | *  |  |
|        | 2.      | Community and Stakeholder Survey                                                                                        |   |    |    |      |    |      |    |    |    |  |
|        |         |                                                                                                                         |   |    |    |      |    |      |    |    |    |  |



# Thank you for your consideration...