

DE-FE0031909

Dehydration Membrane Reactor for Production of Valuable Chemicals from CO₂ and H₂

Shiguang Li, Weiwei Xu, Qiaobei Dong, Howard Meyer, *GTI Energy* Xinhua Liang, Kaiying Wang, *Missouri University of Science and Technology (Missouri S&T) and Washington University in St. Louis (WashU)*

Miao Yu, Richard Ciora, Jinyin Lyu, The State University of New York at Buffalo (UB)

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

GTI Energy: 80-year history of turning raw technology into practical energy solutions

GTI Energy is a leading energy research and training organization

Across the entire energy value chain

World-class facility in Chicago area

CCUS is one of GTI strategic focus areas

Carbon capture

- <u>FE0031946</u>: 20 TPD facilitated transport membrane (FTM) for power plant application
- **FE0032466**: 3 TPD ROTA-CAP for steel plant application
- **FE0032463**: 3 TPD FTM for cement plant (sub to OSU)
- FE0031598: Bench-scale GO-based membrane
- **FE0032215**: Nano-confined ionic liquid membrane
- **FE0031730**: Size-sieving adsorbent (sub to UB)

Carbon conversion

- <u>FE0031909</u>: Membrane reactors for conversion of CO₂ to fuels/chemicals
- <u>FE0032246</u>: Converting CO₂ to carbon-negative alternative cement (sub to WashU)

Carbon dioxide removal (CDR)

- **FE0031969**: Trapped small amines in capsules (sub to UB)
- Carbon transport and storage
 - FE0032239: CarbonSAFE Phase II

Project Overview

- Performance period: 1/1/21 3/31/25
- **Total funding**: \$1,269,664 (DOE: \$1.0MM, cost share: \$269,664)
- <u>Objectives</u>: Develop membrane reactor for production of liquefied petroleum gas (LPG) valuable chemicals from CO₂ and H₂
- **Goal**: CO₂ conversion >50%, LPG yield >45%

<u>Team</u> :	Member	Roles
	GTI ENERGY solutions that transform	 Project management and planning Parametric and deactivation tests Techno-economic and life-cycle analyses
	Le	Membrane and membrane reactor development
	MISSOURI SST University in St. Louis	Catalyst development

The rising need for LPG

- Global LPG production ~330 million tonnes in 2022
- The Europe LPG market was roughly 42 million tonnes in 2021, and is expected to grow to 59 million tonnes by 2027
- Nearly 2% of the U.S. energy needs are supplied LPG
- LPG is an economically efficient, cooking energy solution already used by over 2.5 billion people worldwide

Technology description

10-35 bar and 220-330°C

- One-step process with bifunctional catalyst intensifies a process that would otherwise require multiple steps:
 - Methanol synthesis: $CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O$
 - LPG synthesis: MeOH \Rightarrow LPG + hydrocarbon + H₂O

Catalyst 1: CuO/ZnO/Al₂O₃ based Catalyst 2: Zeolite β based

 Na⁺-gated membrane (Science, vol. 367, pp. 667, 2020) removes water in situ, shifting the equilibrium towards product formation

Catalyst development

- Methanol synthesis $(CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O)$
 - Zirconium (Zr) modified CuO/ZnO/Al₂O₃ (CZZA)
- LPG synthesis: MeOH \Rightarrow LPG + hydrocarbon + H₂O
 - Previously, we had used Pd-zeolite β catalyst
 - Currently, we are developing Pd-free acid treated zeolite β

CZZA nano-particles (~15 nm) TEM image

Bench-mark LPG synthesis with packed bed reactor: LPG yield of 11% when using bifunctional catalyst

- Reaction temperature: 300°C
- Pressure: 20 bara
- **Bifunctional catalyst**: 0.5 g CZZA and 1 g Pd- β zeolite
- Reaction products: CO, CH₄, C₂H₆, C₃H₈, n-C₄H₁₀, i-C₄H₁₀, C₅+, CH₃OH, DME

Results :	CO ₂ conversion	31%
	Hydrocarbons selectivity	46%
	LPG selectivity	35%
	LPG yield	11%

Acid treated β -zeolite catalysts, even without Pd, showed high LPG yield

- T = 300°C
- Pressure = 20 bara
- CZZA : β-zeolite = 0.5g : 1g
- GHSV = 1,200 mL·g⁻¹·h⁻¹

- "0.3M0.1Pd": β-zeolite catalyst with 0.1 wt.% Pd treated by 0.3 M HNO₃ solution during Pd loading
- "0.1M": β-zeolite catalyst treated by 0.1 M HNO₃ solution

 The 0.5M nitric acid treated catalyst without Pd showed the highest LPG yield

8

XRD shows no structure changes after acid treatments

Characterization of β-zeolite catalyst after treatments – NH₃ temperature-programed desorption

Temperature / °C

ENERGY

Membrane and Membrane Reactor Development

Breakthrough development of Na⁺-gated, nanochannel membrane for dehydration

Science

Na⁺-gated water-conducting nanochannels for boosting CO₂ conversion to liquid fuels

Huazheng Li, Chenglong Qiu, Shoujie Ren, Qiaobei Dong, Shenxiang Zhang, Fanglei Zhou, Xinhua Liang, Jianguo Wang, Shiguang Li and Miao Yu

Science **367** (6478), 667-671. DOI: 10.1126/science.aaz6053

Na⁺ neutralizes the negatively charged NaA framework and position inside zeolite nanocavities, allowing fast transport of small H₂O molecules, whereas blocking the permeation of larger molecules, such as H₂, CO₂, CO, and methanol

Kinetic diameters:

- H₂O: 0.265 nm
- H₂: 0.289 nm

- Methanol: 0.36 nm
- CO₂: 0.33 nm

Membrane showed high flux and selectivity for dehydration of $H_2O/CO_2/CO/H_2$ /methanol mixture

Other selectivities

ENERGY

- H₂O/H₂ >190
- H₂O/CO >170
- H₂O/MeOH >80

Kinetic diameters:

- H₂O: 0.265 nm
- H₂: 0.289 nm
- CO₂: 0.33 nm
- Methanol: 0.36 nm

Membrane reactor LPG synthesis: CO₂ conversion as high as 91%, LPG yield as high as 62%

300°C, CZZA/ β -zeolite (0.5M nitric acid treated) catalyst, H₂/CO₂ ratio = 5:1, W/F = 23.7 g(cat)/(mol/h)

W/F = weight of catalyst / flow rate of the feed stream; LPG: liquefied petroleum gas; DME: dimethyl ether

Membrane reactor showed significantly faster startup than other reactors after dormancy

Comparison to other reactors reported in the literature

75 ·

Steady-state LPG yield, %

Studies	Reactor type	Catalysts	Temp. (°C)	Pressure (bar)	CO ₂ conversion	LPG yield	Time to reach steady state (h)
Wang et al., <i>Nature Comm</i> . 4 (2023) p 2627	Fixed bed	InZrOx-β zeolite	315	30	20.4%	7.1%	25
Wang et al., Nature Catalysis, 5 (2022) p 1038	Fixed bed	GaZrOx/SSZ-13	300	30	9.1%	8.4%	80
Zhao et al., <i>Appl. Catal., B</i> (2024) p123936	Fixed bed	MoS _{x/} HSSZ-39	300	40	13.0%	12%	40
Li et al., <i>Fuel Proc. Tech.</i> 136 (2015) p50	Fixed bed	CZZA/Pd-β zeolite	260	20	29.4%	4.8%	10
Ullah et al. Int. J. Hyd. Energy, 48 (2023) p21735	Plasma	Ni/CeO ₂	300	1	86%	6.7%(C ₂₊)	3.5
Wang et al. Green Chemistry, 23 (2021) p1642	Plasma	Co/Al ₂ O ₃	400	1	74%	8.8	2
This study	Membrane	CZZA/Pd-β zeolite	300	20	90.2%	61%	<1

Literature comparison: superior performance to packed bed reactors for LPG synthesis

- Highest LPG productivity and CO₂ conversion of any work found in literature (CO₂ conversion to LPG)
- Only other competitive performance used a highly impractical configuration of <u>two</u> packed bed reactors with intercooling and reheating in between
 - 1st packed bed reactor: 260°C
 - Cooling to 0°C
 - Reheating from 0°C to 330°C
 - 2nd packed bed reactor: 330°C

Milestone status

	Task/		Planned	Revised	Actual
#	Subtask	Milestone Title/Description	-	Completion	Completion
	4	Outrasit un data d Dasia et Mara a sere est Plan ta DOE	Date	Date	Date
M1.1	1	Submit updated Project Management Plan to DOE	2/28/21	2/28/21	2/18/21
M1.2	1	Complete Kickoff Meeting	3/31/21	3/30/21	3/18/21
M1.3	1	Submit technology maturation plan to DOE	3/31/21	3/30/21	3/23/21
M2.1	2	Ship >20 g of catalysts with BET surface area >100 m ² /g to UB from MS&T	6/30/21	6/30/21	3/31/22
M3.1	3	Achieve CO_2 conversion >30%, hydrocarbon yield >25% at 200-350°C and 10-35 bar	6/30/21	3/31/23	3/31/23
M4.1	4.1	Complete development of CZZA-based catalyst with surface area > 100 m ² /g, and palladium (Pd) loading \ge 0.1 wt.% for the Pd- β zeolite catalyst	12/30/21	9/30/23	6/5/23
M4.2	4.2	Achieve CO_2 conversion >40%, hydrocarbon yield >15%, and LPG yield >7% at 220- 350°C and 10-35 bar in a fixed bed reactor; achieve CO_2 conversion >80%, hydrocarbon yield >60%, and LPG yield >35% at 220-330°C and 10-35 bar in a membrane reactor	12/30/21	9/30/23	6/6/23
M5.1	5	Achieve CO_2 conversion >85%, hydrocarbon yield >75%, and LPG yield >45% at 220-330°C and 10-35 bar	9/30/22	6/30/24	10/31/23
M6.1	n	Achieve CO_2 conversion >90%, hydrocarbon yield >80%, and LPG yield >45% at 220-330°C and 10-35 bar using optimized catalyst and tested in membrane reactor	9/30/22	12/31/24	6/30/24
M7.1	7	Complete 100-500 hours continuous testing; achieve steady-state CO ₂ conversion >85%, LPG yield >45% at 220-330°C and 10-35 bar	12/30/22	3/31/25	
M8.1	8	Issue Final TEA report with a Technology Gap Analysis	12/30/22	3/31/25	
M8.2	8	Issue Final LCA report	12/30/22	3/31/25	
M1.4	1	Submit Final Technical Report	3/30/23	6/30/25	17

Membrane reactor technology development path

GTI ENERGY

- GTI and partners are developing a membrane reactor for production of valuable chemicals
 - Na⁺-gated membrane removes water in situ, shifting equilibrium towards product formation
 - Bifunctional catalyst allows for higher conversion of CO2 and higher yield of the product
- One-step membrane reactor LPG synthesis using bifunctional catalyst: CO₂ conversion as high as 91% and LPG yield as high as 62%
- Significantly faster startup (relative to other reactors) and good dynamic stability
- Superior performance to packed bed reactors

Acknowledgements

Financial and technical support

 DOE NETL: Andy Aurelio, Kanchan Mondal, Andrea McNemar and Andrew O'Palko

Disclaimer

This presentation was prepared by GTI Energy as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Appendix – Organization chart

Appendix – Gantt chart

)	Task NO	SubT NO	MS	Task Name	Start	Finish		2021 2022 202	3 2024 2025 02030401020304010203
1	1.0	NO		Project Management and Planning	Fri 1/1/21	Mon 3/31/25	Q4		
2		1.01		Project Management Plan	Fri 1/1/21	Mon 3/31/25			
3			M1.1		Sun 2/28/21	Sun 2/28/21		♦ 2/28	
4			M1.2			Tue 3/30/21		3/30	
5			M1.3	Submit technology maturation plan to DOE	Tue 3/30/21	Tue 3/30/21		3/30	
6	1		M1.4	Submit Final Technical Report	Mon 6/30/25	Mon 6/30/25			• •
7		1.02		Technology Maturation Plan	Fri 1/1/21	Mon 3/31/25			
8	2.0			Preparation, characterization, and optimization of catalysts	Fri 1/1/21	Fri 3/31/23		• • •	
9			M2.1	Ship >20 g of catalysts with BET surface area >100 m2/g to UB from MS&T	Wed 6/30/21	Wed 6/30/21		6/30	
10	3.0			Sequential membrane reactor testing and optimization	Fri 1/1/21	Fri 3/31/23	4	4	
11			M3.1	Achieve CO2 conversion >30%, hydrocarbon yield >25% at 200-350°C and 10-35 bar	Fri 3/31/23	Fri 3/31/23		•	. 3/31
12	4.0			Catalyst optimization and catalytic performance evaluation	Sat 4/1/23	Sat 9/30/23	1		
13		4.01		Catalyst optimization	Sat 4/1/23	Sat 9/30/23	1	1	
14			M4.1	Complete development of CZZA-based catalyst with surface area > 100 m2/g, and palladium (Pd) loading \geq 0.1 wt.% for the Pd-B zeolite catalyst	Sat 9/30/23	Sat 9/30/23			9/30
15		4.02		Catalytic performance evaluation of the optimized catalyst	Sat 4/1/23	Sat 9/30/23	1	1	
16			M4.2	Achieve CO2 conversion >40%, hydrocarbon yield >15%, and LPG yield >7% at 220-350°C and 10-35 bar in a fixed	Sat 9/30/23	Sat 9/30/23			9/30
				bed reactor; achieve CO2 conversion >80%, hydrocarbon yield >60%, and LPG yield >35% at 220-330°C and 10-35 bar					
17	5.0			Bifunctional membrane reactor testing and optimization	Sun 10/1/23	Sun 6/30/24			line la
18			M5.1	Achieve CO2 conversion >85%, hydrocarbon yield >75%, and LPG yield >45% at 220-330°C and 10-35 bar	Sun 6/30/24	Sun 6/30/24			♦ 6/30
19	6.0			Optimization of bifunctional catalyst for membrane reactor testing	Mon 7/1/24	Mon 3/31/25			
20		6.01		Optimization of the catalyst	Mon 7/1/24	Mon 3/31/25			l l l
21		6.02		Catalytic performance evaluation of the optimized catalyst	Mon 7/1/24	Mon 3/31/25			ř.
22			M6.1	Achieve CO2 conversion >90%, hydrocarbon yield >80%, and LPG yield >45% at 220-330°C and 10-35 bar using optimized catalyst and tested in membrane reactor	Tue 12/31/24	Tue 12/31/24			♦ 12/31
23	7.0			Membrane reactor parametric and deactivation tests	Tue 10/1/24	Mon 3/31/25	1		
24			M7.1	Complete 100-500 hours continuous testing; achieve steady-state CO2 conversion >85%, LPG yield >45% at 220-330°C and 10-35 bar	Mon 3/31/25	Mon 3/31/25			▲ 3/3 ⁻
25	8.0			Detailed techno-economic and life-cycle analyses	Sun 12/1/24	Mon 3/31/25			
26			M8.1	Issue Final TEA report with a Technology Gap Analysis	Mon 3/31/25	Mon 3/31/25			♦ 3/3
27			M8.2	Issue Final LCA report	Mon 3/31/25	Mon 3/31/25			♦ 3/3