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Project Overview

Title: Converting CO2 and Alkaline Solid Wastes into Carbon-Negative Supplementary 
           Cementitious Materials (SCMs) for Co-decarbonization of Multiple Sectors

Performance Period: 10/1/2023 – 9/30/2025

Total Funding: 
  DOE:  $2,000,000
  Cost share: $500,000

 

Overview
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Team: Missouri S&T
 STEM-intensive public research university, 

founded in 1870, located in Rolla, MO

 Campus and colleges: 3 colleges; known primarily for 
the engineering programs

 Fast developing innovation/education ecosystem: 
Protoplex, Innovation Lab, STEM Center, BioX, etc., 
enabled by a $300M gift and state investment

 Strong support for research facilities: 

o Materials Research Center
o Center for Research in Energy and Environment
o Center for Infrastructure Engineering Studies
o Advanced Materials for Sustainable Infrastructure 

as a signature research area

Hongyan Ma
Associate Professor of Civil/Materials Engineering
Director, Laboratory of Future Cements and 
Carbon-Negative Initiatives (FuCCI)
Lab Space: 2,000 ft2

Expertise: Carbon-efficient and carbon-negative 
cement and concrete; functional construction 
materials; multi-scale modeling; energy storage…
 

Wenyu Liao
Assistant Research Professor of Civil Engineering
Manager, FuCCI 
Expertise: Characterization of cement and solid 
wastes; concrete testing; carbon-negative innovation

Aditya Kumar
Associate Prof. of Materials Science and Engineering
Expertise: Sustainable cements; thermodynamics 
and kinetic modeling; machine learning

Mahelet Fikru
Associate Prof. of Economics
Expertise: Techno-economic analysis; economics 
modeling; optimization

Project Overview
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Team: Lawrence Livermore National Lab
 DOE/NNSA lab,                    

founded in 1952, located in Bay Area, CA

 Campus: 2 sites; known for energy science & 
technology; open campus to academia & industry

 Large innovation ecosystem: Open campus; in 
vicinity to Berkeley, Stanford, MSIs; research programs 
with UC (e.g., Merced) & Livermore Lab Foundation  

 Strong supports on research & development: 

o Advanced Manufacturing Lab  
o Carbon Initiative 
o High performance computing
o Getting to Neutral Report, etc.

Jiaqi Li
Research Scientist
Porous media group: OpenLCA, SimaPro, 
GreenConcrete LCA; carbon analyzer, TGA-
MS, etc.
Expertise: Carbon-efficient cement and 
concrete; advanced material characterization; 
life-cycle assessment
 

Project Overview
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To develop a transformational process to convert CO2 and alkaline solid wastes into
carbon-negative blended SCMs to meet the demand of cement/concrete market, as 
well as co-decarbonize and economically benefit multiple industrial sectors

Project Overview
Overall project objectives

 CO2/flue gases
 Alkaline solid wastes (steel slags, off-spec coal ashes, MSWI ashes, …)
 Carbon-negative blended supplementary cementitious materials (SCMs)
 SCMs: substitution of portland cement (>50%)
 Multiple industrial sectors (e.g., cement manufacturing, power generation and steel 

making, which generate both CO2 and solid wastes)
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Technology Background
Why carbon-negative?

Driving Force of Climate Change:

 422 ppm in 2023 2-3℃ higher temperature and 
> 6m higher sea levels (90% reliability) 

(Foster & Rohling, 2013)
 Warming effects may emerge after a 10-to-30 years 

lag                                                                                      (Ricke & Caldeira, 2014)

Immediate Actions?      
 Emission Reduction and Carbon Neutrality: necessary 

but not enough
 Carbon Negativity: reduce CO2 concentration (ppm) 

i.e.: utilize and/or permanently store captured CO2

https://www.pnas.org/doi/10.1073/pnas.1216073110
https://iopscience.iop.org/article/10.1088/1748-9326/9/12/124002#:%7E:text=Maximum%20warming%20occurs%20a%20median,given%20region%20of%20the%20plot.
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Why SCMs?

Decarbonization of cement/concrete

Need?
     Annual production: 4.5 Gt cement; >30 Gt concrete
     ~10% of anthropogenic CO2 emission

Challenges
     Reduce CO2 emission by 24% by 2050 (IEA 2018) 
     Achieve net zero by 2050 (PCA/GCCA, 2021/2022)

Possibilities 
     Increasing use of carbon-efficient SCMs
     Improving efficiency of cement production/utilization
     Developing sustainable alternative cements

Limitation of resources

 Class C/F fly ash? GGBS? Calcined clay?
    How about off-specification industrial wastes?

Technology Background
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Why (off-specification) alkaline solid wastes?

Off-spec coal combustion residues (2.5 Gt + 20 Mt/year) Slags (steel, copper, lead, etc.; >15 Mt/year)

Waste-to-Energy (WtE) residues 
(>10 Mt/year)

Recycled concrete

Mine tailings/waste rock Waste glass Sludge and Dirt C&D wastes

Cement kiln dust

Technology Background
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The Technology

Use CO2 to upcycle alkali aluminosilicate solid wastes into carbon-negative blended SCMs, 
which can substitute part of cement without compromising the performance of concrete

The product: nano-/micro-carbonates-aluminosilicate (nCAS)

Technology Background

?

?
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The Technology: carbon-negative process

Production

Carbonation efficiency
Carbonate nano-/submicron-particles 

formed following carbonation

Background and Project Scope

MSWI bottom ash (BA):
Low reactivity?
Metallic aluminum?
Other detrimental substances?

Adaptive to low-quality feedstock?
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Steps and work plan
Project Scope

Task 1: Project Management and Planning

Task 2: Process model development and initial TEA and LCA
Task 3: Solid wastes sample collection and detailed characterization
Task 4: Optimization of carbonation route 1 
Task 5: Optimization of carbonation route 2 
Task 6: Tests of nCAS and nCAS-incorporated cement pastes

Task 7: Approach down-selection and final optimization
Task 8: Scale up production to achieve no less than 10 Kg CO2 converted/day
Task 9: Standard performance tests of nCAS-incorporated cement-based materials
Task 10: Final TEA and LCA 

B
P

1
B

P
2
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Milestones/successful criteria
Project Scope

BP Date Success Criteria

BP1 9/30/2024

1) Comprehensive database of alkaline solid wastes encompassing up to 200 

samples from diverse sources;

2) Achieving CaO/MgO-to-carbonate conversion rate >65%;

3) Machine learning model trained and validated, capable of predicting 

carbonation efficiency with >90% confidence;

4) Cement paste (water-to-binder ratio=0.4) with ≥50% nCAS (containing 

≥15% CO2) substitution achieving 28-day compressive strength >40 MPa;

5) Supporting graduate students and postdoctoral researchers from 

underrepresented groups.
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Process model and preliminary LCA
Progress and Current Status

 Base scenario
     Off-spec coal ash | co-located coal power plant (heat, electricity & CO2 source) for carbonation 

–0.1~–0.2 kg CO2e/kg nCAS
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Municipal solid 
waste incineration 
(MSWI) ashes

o York County Solid Waste & Refuse 
Authority

o Covanta/Reworld
…

Coal ashes o Electric Power Research Institute
o Local concrete producers
…

Steel slag o SSAB
o Cleveland-Cliffs
o Harsco
o Reserve Management Group 
…

General o Continental Cement
o Ash Grove
o Quapaw Tribe, OK
…

Solid waste sampling and characterization
Progress and Current Status
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Solid waste sampling and characterization: Compositional variation
Progress and Current Status

Steel slag
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 Dissolution of  Ca2+ and Mg2+ ions in water 

 Carbonation: Ca2+/Mg2+  + CO3
2-  CaCO3 / MgCO3 

Mechanism study: route 1, steel slag
Progress and Current Status



21

 The main carbonation reactive minerals in the slags are larnite, mayenite, and AFm phases (Mc, Hc, and cHc)

 The main carbonation products are calcite and amorphous phases, such as Al and Si gel

M: Mayenite, Ca12Al14O33; C: Calcite, CaCO3; L: Larnite, Ca2SiO4, Am: Amorphous; Mc: Calcium monocarboaluminate, 
Ca4Al2(OH)12(CO3)(H2O)5; Hc: Calcium hemi-carboaluminate, Ca4Al2(OH)13(CO3)0.5(H2O)4; cHc: carbonatedcalcium hemi-
carboaluminate, Ca4Al2(OH)12.4(CO3)0.8(H2O)4

Mechanism study: route 1, steel slag
Progress and Current Status



Uncarbonated steel slag Carbonated steel slag

Calcite
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Mechanism study: route 1, steel slag
Progress and Current Status

 The main carbonation reactive minerals in the slags are larnite, mayenite, and AFm phases (Mc, Hc, and cHc)

 The main carbonation products are calcite and amorphous phases, such as Al and Si gel
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Carbonation of fly ash

Less water: route 2

Mechanism study: route 1 and route 2, fly ash
Progress and Current Status

More water: route 1
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Fly ash (route 1 and route 2)

Steel slag (route 2)

Process optimization: effects of L/S, T, P, CCO2, …
Progress and Current Status
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How much CO2 uptake?
Progress and Current Status

 Steel slags: 15%-20%; >4 mmol/g
 Ashes: 5%-25%; up to 5.7 mmol/g
 MSWI FA?   10 mmol/g?
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Sample Type Conversion 
rate @ 30 min

Time when 
conversion 
rate >65%

Maximum 
conversion 

rate

Steel slag LMF 36.3% / 53.8%

Steel slag EAF 39.8%, ambient
65.5%, @60℃ 24h 84.4%

Steel slag LAF 33.6% 48h 100%

Coal fly ash FAC 70% 10 minutes 81%

MSWI fly ash CFA-B8 69% 10 minutes 75%

MSWI fly ash CFA-B7 79% 10 minutes 82%

MSWI filter cake CFA-B8 46% / 60%

Similar 
total 
CO2 
uptake

CaO/MgO-to-carbonate conversion rate 

Rate and kinetics of conversion: route 1
Progress and Current Status



27

Sample Type Conversion 
rate @ 30 min

Conversion 
rate @ 120 min

Maximum 
conversion 

rate
Steel slag LMF 32.3% 42.5% 44.9%

Steel slag EAF 29.2% 41% 55.2%

Steel slag LAF 20.9% 31% 53.1%

CaO/MgO-to-carbonate conversion rate 

Rate and kinetics of conversion: route 2
Progress and Current Status
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Steel slag, CC over-dosed

nCAS-incorporated cement pastes
Progress and Current Status

Fly ash, ideal composition
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DEIA and workshop
Community Benefits

 Hired one graduate student and one postdoctoral 
researcher from underrepresented groups

 Organized a high-school student workshop

7/26/2024, half-day workshop 
“Storing CO2 in Infrastructure Materials to Combat Climate Change”

As part of the 
2024 National Summer Transportation Institute
Co-sponsored by
USDOT
MoDOT
Missouri S&T
The National Museum of Transportation
Center for Infrastructure Engineering Studies
Center for Intelligent Infrastructure
Lab of Future Cements and Carbon-Negative Initiatives
… 
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Justice40
Community Benefits

 Prioritize processing solid wastes located in underserved 
communities
 Sampling
 Upscaling
 Commercialization 
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 Not all solid wastes are available for upcycling (willingness of owners)

 Some solid wastes may not be “reliable” feedstock (viability)

 Some solid wastes may not be available anymore (changes in practice)

Lessons Learned
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 Meet technical milestones

 Scale up the reactors

 Pilot trial at MS&T

 Demo project with an innovation 
ecosystem

 Launching a startup

 Licensing 

 Two business models

 …

Plan for Future Development and Commercialization

The 0.2 m3 reactor and 1 m3 concrete batching plant at MS&T
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Summary

 150 samples
 Carbonation protocols have been optimized
 Carbonation mechanisms have been studied
 >65% degree of carbonation conversion is 

feasible
 When used in cement paste to substitute 

cement, nCAS typically shows a filler effect in 
early age, and enables secondary reactions to 
boost late-age development

 Database and AI are under development

Open to more solid wastes, academic collaborators, and commercialization partners
Contact

Hongyan Ma
mahon@mst.edu; 573-612-9568

mailto:mahon@mst.edu
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