

Converting CO₂ and Alkaline Solid Wastes into Carbon-Negative Supplementary Cementitious Materials for Co-decarbonization of Multiple Sectors

(DE-FE0032395)

Hongyan Ma

Kummer Impact Professor, Francisco Benavides Scholar, and Associate Professor Civil/Materials Engineering & Energy Economics Missouri University of Science and Technology (**S&T**)

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Overview

- Technology Background
- □ Project Scope
- Progress and Current Status
- **Community Benefits**
- Lessons Learned
- □ Plan for Future Development and Commercialization
- □ Summary

Project Overview Overview

Title: Converting <u>CO₂</u> and <u>Alkaline Solid Wastes</u> into **Carbon-Negative Supplementary Cementitious Materials (SCMs)** for Co-decarbonization of <u>Multiple</u> Sectors

Performance Period: 10/1/2023 – 9/30/2025

Total Funding:

DOE:\$2,000,000Cost share:\$500,000

Project Overview Team: Missouri S&T

- Campus and colleges: 3 colleges; known primarily for the engineering programs
- Fast developing innovation/education ecosystem: Protoplex, Innovation Lab, STEM Center, BioX, etc., enabled by a \$300M gift and state investment

Strong support for research facilities:

- o Materials Research Center
- Center for Research in Energy and Environment
- Center for Infrastructure Engineering Studies
- Advanced Materials for Sustainable Infrastructure as a signature research area

Hongyan Ma

Associate Professor of Civil/Materials Engineering **Director**, Laboratory of Future Cements and Carbon-Negative Initiatives (**FuCCI**) **Lab Space**: 2,000 ft²

Expertise: Carbon-efficient and carbon-negative cement and concrete; functional construction materials; multi-scale modeling; energy storage...

Aditya Kumar

Associate Prof. of Materials Science and Engineering **Expertise**: Sustainable cements; thermodynamics and kinetic modeling; machine learning

Mahelet Fikru

Associate Prof. of Economics **Expertise**: Techno-economic analysis; economics modeling; optimization

Wenyu Liao

Assistant Research Professor of Civil Engineering Manager, **FuCCI Expertise**: Characterization of cement and solid wastes; concrete testing; carbon-negative innovation

Project Overview

Team: Lawrence Livermore National Lab

> <u>DOE/NNSA lab</u>,

founded in 1952, located in Bay Area, CA

- <u>Campus</u>: 2 sites; known for energy science & technology; open campus to academia & industry
- Large innovation ecosystem: Open campus; in vicinity to Berkeley, Stanford, MSIs; research programs with UC (e.g., Merced) & Livermore Lab Foundation

Strong supports on research & development:

- Advanced Manufacturing Lab
- o Carbon Initiative
- High performance computing
- Getting to Neutral Report, etc.

Jiaqi Li Research Scientist Porous media group: OpenLCA, SimaPro, GreenConcrete LCA; carbon analyzer, TGA-MS, etc. Expertise: Carbon-efficient cement and concrete; advanced material characterization; life-cycle assessment

Project Overview Overall project objectives

To develop a transformational process to convert \underline{CO}_2 and <u>alkaline solid wastes</u> into <u>carbon-negative</u> **blended** SCMs to meet the demand of cement/concrete market, as well as co-decarbonize and economically benefit <u>multiple industrial sectors</u>

- ➤ CO₂/flue gases
- > Alkaline solid wastes (steel slags, off-spec coal ashes, MSWI ashes, ...)
- Carbon-negative blended supplementary cementitious materials (SCMs)
- SCMs: substitution of portland cement (>50%)
- Multiple industrial sectors (e.g., cement manufacturing, power generation and steel making, which generate both CO₂ and solid wastes)

□ Project Overview

Technology Background

- □ Project Scope
- Progress and Current Status
- **Community Benefits**
- Lessons Learned
- □ Plan for Future Development and Commercialization
- □ Summary

Technology Background Why carbon-negative?

Driving Force of Climate Change:

▶ 422 ppm in 2023 →2-3°C higher temperature and
 > 6m higher sea levels (90% reliability)

(Foster & Rohling, 2013)

Warming effects may emerge after a 10-to-**30** years lag
(Ricke & Caldeira, 2014)

Immediate Actions?

- Emission Reduction and Carbon Neutrality: necessary but not enough
- Carbon Negativity: reduce CO₂ concentration (ppm)

i.e.: utilize and/or permanently store captured CO2

Technology Background Why SCMs?

Decarbonization of cement/concrete

Need?

- → Annual production: 4.5 Gt cement; >30 Gt concrete
- \rightarrow ~10% of anthropogenic CO₂ emission

Challenges

- \rightarrow Reduce CO₂ emission by 24% by 2050 (IEA 2018)
- → Achieve net zero by 2050 (PCA/GCCA, 2021/2022)

Possibilities

- \rightarrow Increasing use of carbon-efficient **SCMs**
- → Improving **efficiency of cement** production/utilization
- → Developing sustainable **alternative cements**

Limitation of resources

- → Class C/F fly ash? GGBS? Calcined clay?
- → How about **off-specification** industrial wastes?

[www.lc3.ch]

Technology Background Why (off-specification) alkaline solid wastes?

Off-spec coal combustion residues (2.5 Gt + 20 Mt/year)

Slags (steel, copper, lead, etc.; >15 Mt/year)

Waste-to-Energy (**WtE**) residues (>10 Mt/year)

Recycled concrete

Cement kiln dust

Mine tailings/waste rock

Waste glass

Sludge and Dirt

C&D wastes

Technology Background The Technology

Use **CO2** to **upcycle** alkali aluminosilicate **solid wastes** into **carbon-negative blended SCMs**, which can substitute **part** of cement without compromising the performance of concrete

The product: <u>n</u>ano-/micro-<u>c</u>arbonates-<u>a</u>lumino<u>s</u>ilicate (nCAS)

MISSOURI

Background and Project Scope The Technology: carbon-negative process

Carbonate nano-/submicron-particles formed following carbonation

MSWI bottom ash (BA): Low reactivity? Metallic aluminum? Other detrimental substances?

12

- □ Project Overview
- Technology Background

Project Scope

- Progress and Current Status
- **Community Benefits**
- Lessons Learned
- □ Plan for Future Development and Commercialization
- □ Summary

Project Scope Steps and work plan

Task 1: Project Management and Planning

Task 2: Process model development and initial TEA and LCA

- **Task 3**: Solid wastes sample collection and detailed characterization
- Task 4: Optimization of carbonation route 1
 Task 5: Optimization of carbonation route 2
 Task 6: Tests of nCAS and nCAS-incorporated cement pastes

Task 7: Approach down-selection and final optimization

Task 8: Scale up production to achieve no less than 10 Kg CO_2 converted/day **Task 9**: Standard performance tests of nCAS-incorporated cement-based mate

Task 9: Standard performance tests of nCAS-incorporated cement-based materials **Task 10**: Final TEA and LCA

14

Project Scope Milestones/successful criteria

BP	Date	Success Criteria			
BP1	9/30/2024	 Comprehensive database of alkaline solid wastes encompassing up to 200 samples from diverse sources; Achieving CaO/MgO-to-carbonate conversion rate >65%; Machine learning model trained and validated, capable of predicting carbonation efficiency with >90% confidence; Cement paste (water-to-binder ratio=0.4) with ≥50% nCAS (containing ≥15% CO₂) substitution achieving 28-day compressive strength >40 MPa; Supporting graduate students and postdoctoral researchers from underrepresented groups. 			

- □ Project Overview
- Technology Background
- □ Project Scope

D Progress and Current Status

- **Community Benefits**
- Lessons Learned
- □ Plan for Future Development and Commercialization
- □ Summary

Progress and Current Status Process model and preliminary LCA

□ Base scenario

Off-spec coal ash | co-located <u>coal power plant</u> (heat, electricity & CO₂ source) for carbonation

Progress and Current Status Solid waste sampling and characterization

	[SWI ashes				6			Municipal solid waste incineration (MSWI) ashes
	N	(a) Filter cake	(b)Small Aggregate	(c) Sand	(d) Filter cake	(e) Bottom Ash	(f) Fly ash	Coal ashes
	Coal ash							Steel slag
		(g) C-Fly ash	(h) F-Fly ash	(i) Boral ash	(j) Bowen ash	(k) Harvested ash		
	teel slags & nine waste							General
	St n	(l) GGBFS	(m) LMF	(n) EAF	(0) RM	(p) Pb-Zn Tailing		

York County Solid Waste & Refuse 0 Authority

Covanta/Reworld 0

...

- **Electric Power Research Institute** Ο
- Local concrete producers Ο

SSAB Ο

...

- Cleveland-Cliffs Ο
- Harsco 0
- **Reserve Management Group** Ο
- ...
- **Continental Cement**
- Ash Grove
- Quapaw Tribe, OK

...

Progress and Current Status

Solid waste sampling and characterization: Compositional variation

Steel slag

Progress and Current Status Mechanism study: route 1, steel slag

 \blacktriangleright Dissolution of Ca²⁺ and Mg²⁺ ions in water

Carbonated duration (h)

 $\succ \text{ Carbonation: } \mathbf{Ca^{2+}}/\mathrm{Mg^{2+}} + \mathrm{CO_3^{2-}} \rightarrow \mathbf{CaCO_3} \ / \ \mathrm{MgCO_3}$

Progress and Current Status Mechanism study: route 1, steel slag

M: Mayenite, $Ca_{12}Al_{14}O_{33}$; C: Calcite, $CaCO_3$; L: Larnite, Ca_2SiO_4 , Am: Amorphous; Mc: Calcium monocarboaluminate, $Ca_4Al_2(OH)_{12}(CO_3)(H_2O)_5$; Hc: Calcium hemi-carboaluminate, $Ca_4Al_2(OH)_{13}(CO_3)_{0.5}(H_2O)_4$; cHc: carbonatedcalcium hemi-carboaluminate, $Ca_4Al_2(OH)_{12}(CO_3)_{0.5}(H_2O)_4$; cHc: carbonatedcalcium hemi-carboaluminate, $Ca_4Al_2(OH)_{12}(CO_3)_{0.5}(H_2O)_4$; CHc: carbonatedcalcium hemi-carboaluminate, $Ca_4Al_2(OH)_{13}(CO_3)_{0.5}(H_2O)_4$; CHc: carbonatedcalcium hemi-carboaluminate, $Ca_4Al_2(OH)_{12}(CO_3)_{0.5}(H_2O)_4$; CHc: carbonatedcalcium hemi-carboaluminate, $Ca_4Al_2(OH)_{12}(CO_3)_{0.5}(H_2O)_4$; CHc: carbonatedcalcium hemi-carboaluminate, $Ca_4Al_2(OH)_{12}(CO_3)_{0.5}(H_2O)_4$; CHc: carbonatedcalcium hemi-carboaluminate, $Ca_4Al_2(OH)_{12}(OH)_{12}(CO_3)_{0.8}(H_2O)_4$

- > The main carbonation reactive minerals in the slags are larnite, mayenite, and AFm phases (Mc, Hc, and cHc)
- > The main carbonation **products** are **calcite** and **amorphous phases**, such as Al and Si gel

Progress and Current Status Mechanism study: route 1, steel slag

Uncarbonated steel slag

Carbonated steel slag

The main carbonation reactive minerals in the slags are larnite, mayenite, and AFm phases (Mc, Hc, and cHc)

> The main carbonation **products** are **calcite** and **amorphous phases**, such as Al and Si gel

Progress and Current Status Mechanism study: route 1 and route 2, fly ash

Carbonation of fly ash

/2024 HV curr mag ⊔ WD HFW det mo 24 PM **10.00 kV 0.20 nA 25 000 x 4.2 mm 16.6 µm ETD SE** More water: route 1

Less water: route 2

23

MISSOURI

Progress and Current Status

Process optimization: effects of L/S, T, P, C_{CO2}, ...

Progress and Current Status How much CO₂ uptake?

- Steel slags: 15%-20%; >4 mmol/g
 Ashes: 5%-25%; up to 5.7 mm
- ≻ MSWI FA?

5%-25%; up to 5.7 mmol/g 10 mmol/g?

Progress and Current Status Rate and kinetics of conversion: route 1

CaO/MgO-to-carbonate conversion rate

Sample	Туре	Conversion rate @ 30 min	Time when conversion rate >65%	Maximum conversion rate	
Steel slag	LMF	36.3%	/	53.8% Sim	nilar
Steel slag	EAF	39.8%, ambient 65.5%, @60°C	24h	84.4% tota	al 2
Steel slag	LAF	33.6%	48h	100% ^{upt}	ake
Coal fly ash	FAC	70%	10 minutes	81%	
MSWI fly ash	CFA-B8	69%	10 minutes	75%	
MSWI fly ash	CFA-B7	79%	10 minutes	82%	
MSWI filter cake	CFA-B8	46%	/	60%	

Progress and Current Status Rate and kinetics of conversion: route 2

CaO/MgO-to-carbonate conversion rate

Sample	Туре	Conversion rate @ 30 min	Conversion rate @ 120 min	Maximum conversion rate
Steel slag	LMF	32.3%	42.5%	44.9%
Steel slag	EAF	29.2%	41%	55.2%
Steel slag	LAF	20.9%	31%	53.1%

Progress and Current Status nCAS-incorporated cement pastes

- □ Project Overview
- Technology Background
- □ Project Scope
- Progress and Current Status
- **Community Benefits**
- Lessons Learned
- □ Plan for Future Development and Commercialization
- □ Summary

Community Benefits DEIA and workshop

Hired one graduate student and one postdoctoral researcher from underrepresented groups
 Organized a high-school student workshop

7/26/2024, half-day workshop → "Storing CO₂ in Infrastructure Materials to Combat Climate Change"

As part of the 2024 National Summer Transportation Institute Co-sponsored by USDOT MoDOT Missouri S&T The National Museum of Transportation Center for Infrastructure Engineering Studies Center for Intelligent Infrastructure Lab of Future Cements and Carbon-Negative Initiatives

. . .

Community Benefits Justice40

- Prioritize processing solid wastes located in underserved communities
 - ➤ Sampling
 - ➢ Upscaling
 - Commercialization

- □ Project Overview
- Technology Background
- □ Project Scope
- Progress and Current Status
- **Community Benefits**
- Lessons Learned
- Plan for Future Development and CommercializationSummary

Lessons Learned

- > Not all solid wastes are available for upcycling (willingness of owners)
- Some solid wastes may not be "reliable" feedstock (viability)
- Some solid wastes may not be available anymore (changes in practice)

□ Project Overview

□ Technology Background

Project Scope

Progress and Current Status

Community Benefits

Lessons Learned

□ Plan for Future Development and Commercialization

□ Summary

Plan for Future Development and Commercialization

- Meet technical milestones
- ➤ Scale up the reactors
- ➢ Pilot trial at MS&T
- Demo project with an innovation ecosystem
- Launching a startup
- ➢ Licensing
- > Two business models
- ▶ ...

The 0.2 $m^{\scriptscriptstyle 3}$ reactor and 1 $m^{\scriptscriptstyle 3}$ concrete batching plant at MS&T

Project Overview
Technology Background
Project Scope
Progress and Current Status
Community Benefits
Lessons Learned
Plan for Future Development and Commercialization

Summary

Summary

- ➤ 150 samples
- Carbonation protocols have been optimized
- Carbonation mechanisms have been studied
- >65% degree of carbonation conversion is feasible
- When used in cement paste to substitute cement, nCAS typically shows a filler effect in early age, and enables secondary reactions to boost late-age development
- > Database and AI are under development

Open to more solid wastes, academic collaborators, and commercialization partners **Contact** Hongyan Ma <u>mahon@mst.edu</u>; 573-612-9568

