Development of an Advanced CO₂ Mineralization Technology for Coproduction of Value-Added Carbonate and Fertilizer Products (DE-FE0032256)

Yongqi Lu, Feyza Kazanc, Partha Saha, Feng Zhang

Illinois State Geological Survey Prairie Research Institute University of Illinois at Urban-Champaign

2024 FECM / NETL Carbon Management Research Project Review Meeting

August 7, 2024

Presentation Outline

- **1. Project Overview**
- 2. Technology Background
- **3.** Technical Approach / Project Scope
- 4. Progress and Current Status of Project
- **5.** Summary of CB/SCI
- 6. Lessons Learned
- 7. Plans for Future Work
- 8. Summary

1. Project Overview (1)

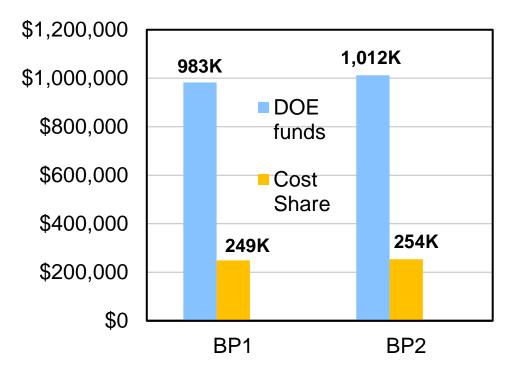
Overall Objectives:

Develop an advanced CO₂ mineralization technology using CO₂ from industrial sources and Flue Gas Desulfurization (FGD) byproducts for coproducing Precipitated Calcium Carbonate (PCC) and fertilizer products by

- \succ conducting lab testing at a scale of 1 LB/hr of CO₂ mineralization,
- validating product properties, and
- > evaluating its techno-economic and life cycle environmental performances

Project Participants

- University of Illinois at Urbana-Champaign: Tech development and testing; materials characterization; TEA; LCA
- Power plants and crop advisors/agronomists: Consulting on engineering analysis and fertilization use & assessment


Project Overview (2)

Project Performance Dates

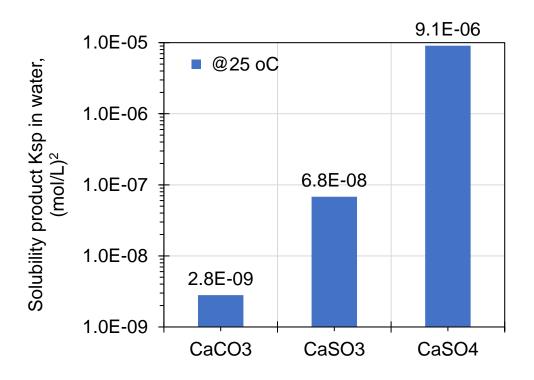
- BP1: 16 months, Aug 1, 2023 Nov 30, 2024 (BP1 extended for 4 months)
- ➢ BP2: 12 months, Dec 1, 2024 − Nov 30, 2025)

Funding Profile

- DOE funding of \$1,994,739
- Cost share (in-kind & cash) of \$502,845 (~20.1%)

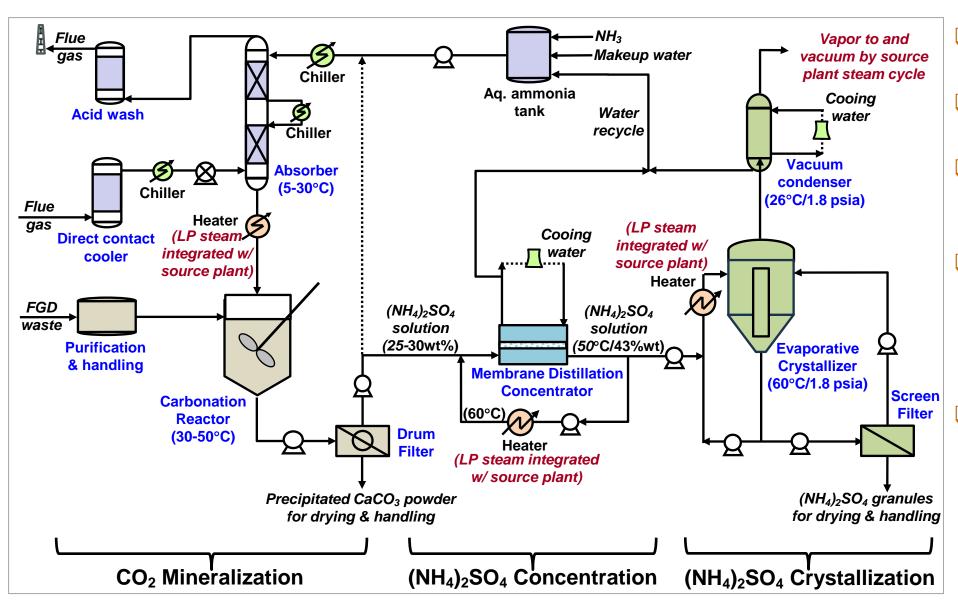
2. Technology Background

Chemistry of CO₂ mineralization with Flue Gas Desulfurization (FGD) byproducts


With FGD gypsum feed:

 $CO_2(g) + 2NH_4OH(aq) + CaSO_4 \cdot 2H_2O(s) = (NH_4)_2SO_4(aq) + CaCO_3(s) + 3H_2O$

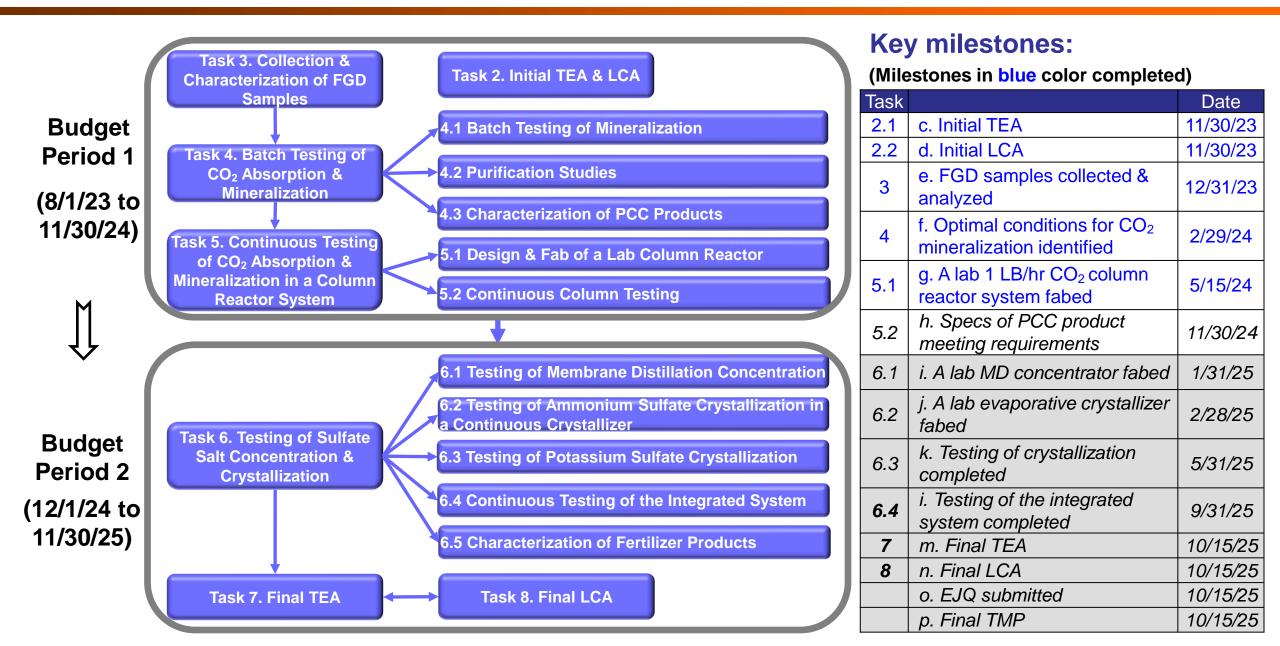
> With FGD non-gypsum feed:


 $CO_{2}(g) + 2NH_{4}OH(aq) + CaSO_{3} \cdot \frac{1}{2}H_{2}O(s) = (NH_{4})_{2}SO_{3}(aq) + CaCO_{3}(s) + \frac{1}{2}H_{2}O$ $(NH_{4})_{2}SO_{3}(aq) + \frac{1}{2}O_{2} = (NH_{4})_{2}SO_{4}(aq)$

Lower solubility of CaCO₃ vs. CaSO₄ and CaSO₃ (by 3,250 & 25 times, respectively) provides the driving force for the reaction equilibria to favor the formation of carbonate precipitates

Solubility products (K_{sp}) of CaCO₃, CaSO₄ and CaSO₃ at 25 °C

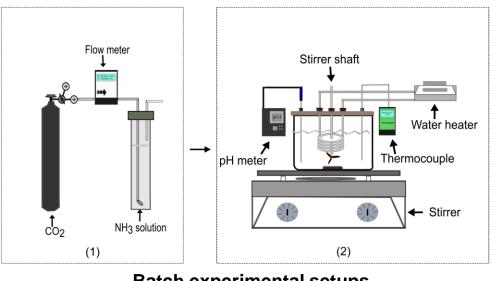
Advantages of the Proposed CO₂ Mineralization Process



- Combined CO₂ capture & utilization from flue gas
- Beneficial utilization of industrial waste materials
- Purification incorporated to improve the purity of products
- Membrane distillation concentration reduces energy use vs. traditional evaporative concentration
- Use of low-quality steam from power plants to provide both heat and vacuum, improving energy efficiency

Technical and Economic Challenges of Technology Development

- Producing pure and uniform precipitated CaCO₃ powders are challenging (they may consist of a mixture of polymorphs and contain impurities
- **Produce** $(NH_4)_2SO_4$ crystals with a size of ≥ 1 mm and meet environmental requirements
- Few research conducted on utilization of non-gypsum materials (e.g., CaSO₃·1/2H₂O & CaSO₄·2H₂O mixture from wet scrubbers with inhibited oxidation and dry scrubbers)
- System integration to enhance energy efficiency, minimize ammonia emissions, maximize process water recycle, etc.


3. Technical Approach / Project Scope

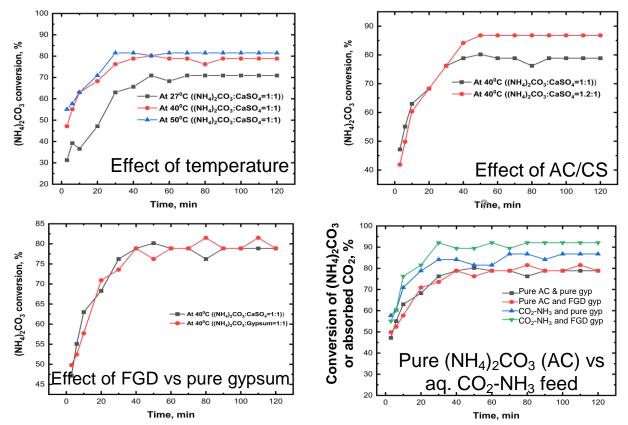
Success Criteria

	Success Criteria
	 Batch testing of CO₂ mineralization to identify optimal conditions and achieve >90% yield, <10 μm particle size, >97% purity for PCC product
BP1	 Design, fab, & testing of a lab 1 LB/hr CO₂ mineralization system Achieve >90% yield of PCC with required PCC properties
BP2	 Design, fab, & testing of a lab MD concentrator and an EC unit; Obtain ~1 mm fertilizer granules and meet fertilizer requirements Testing of the integrated system producing PCC and fertilizer products with required specs
	 TEA shows cost-competitiveness for PCC and fertilizer production LCA validates environmental sustainability vs. Comparison Production Processes

4. Progress and Current Status of Project 4.1 - Batch Testing of CO₂ Mineralization Reactions

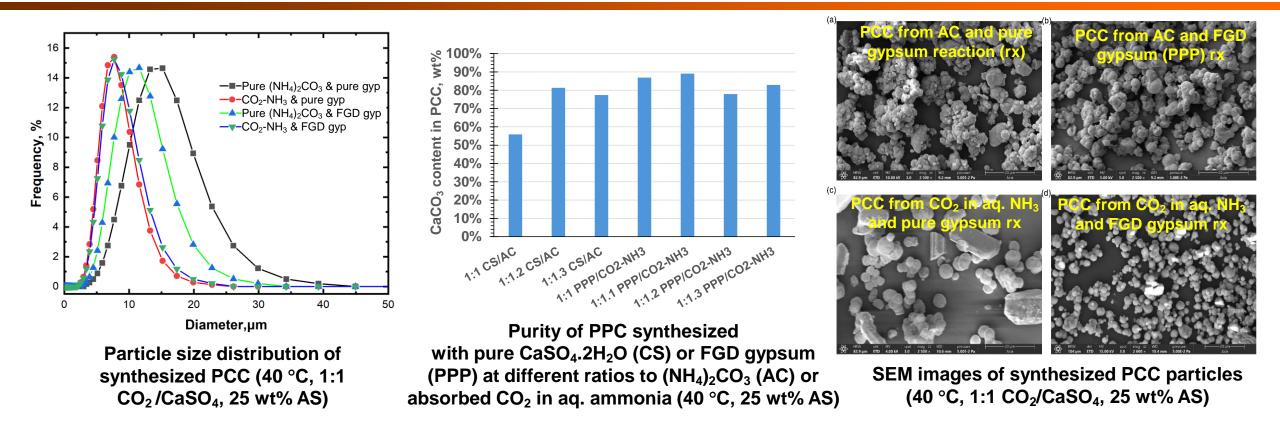
Batch experimental setups

(1) CO_2 absorption


 $2NH_4OH (aq) + CO_2 (g) = (NH_4)_2CO_3 (aq) + H_2O$ $2NH_4OH (aq) + CO_2 (g) = NH_2COONH_4 (aq) + 2H_2O$ $NH_4OH (aq) + CO_2 (g) = NH_4HCO_3 (aq)$

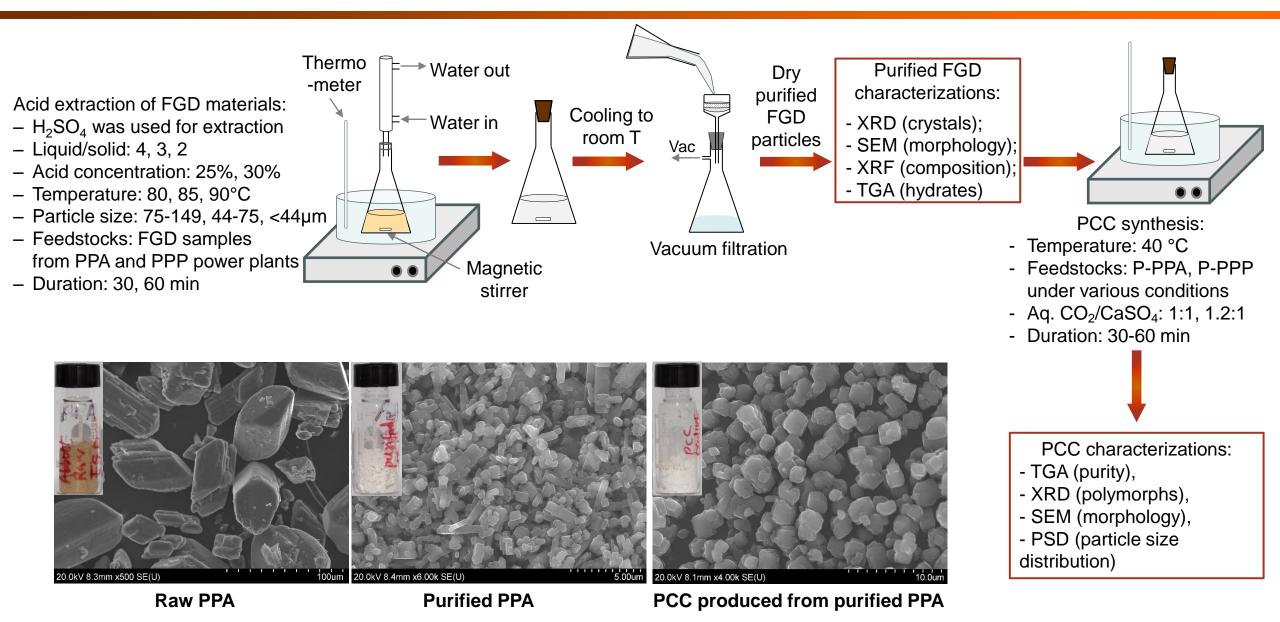
(2) Mineralization with gypsum

 $(NH_4)_2CO_3 (aq) + CaSO_4 (s) = CaCO_3 (s) + (NH_4)_2SO_4 (aq)$ $NH_2COONH_4 (aq) + H_2O = (NH_4)_2CO_3 (aq)$


Parametric testing:

- \Box Using analytical-grade (NH₄)₂CO₃ (AC)
- Using CO₂-loaded aq. ammonia
- Suitable conditions, such as T, (NH₄)₂CO₃/CaSO₄ (AC/CS) or CO₂ loading/CS, (NH₄)₂SO₄% (AS), feed materials, identified

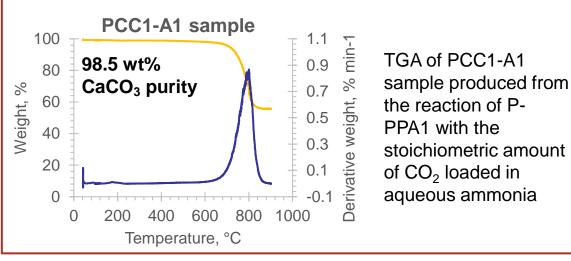
10


Batch Parametric Testing and PCC Product Characterization

Given the reaction with CO₂ loaded in aq. ammonia, smaller PCC particles were formed [i.e., a geomean diameter of 7.7 μm vs. 11.1 μm obtained from that with pure $(NH_4)_2CO_3$] for PPP FGD gypsum

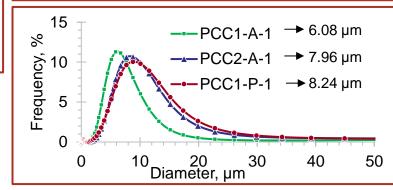
- □ PCC purity ranged from 55 to 90% depending on synthesis conditions
- Spherical vaterite particles were primary CaCO₃ in all PCC synthesized using either analytical-grade (pure) or raw FGD gypsum; Vaterite particles precipitated with CO₂ in aq. ammonia exhibited smaller spheres

4.2 Purification of Raw FGD Materials for PCC Synthesis: Methods

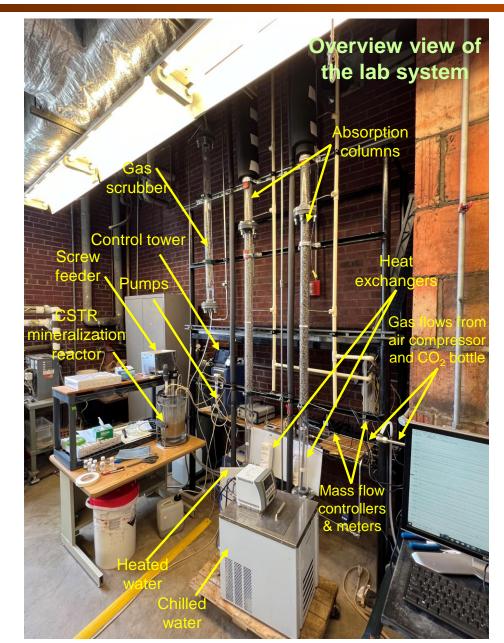

Purification of Raw FGD Materials Significantly Increased PCC Purity

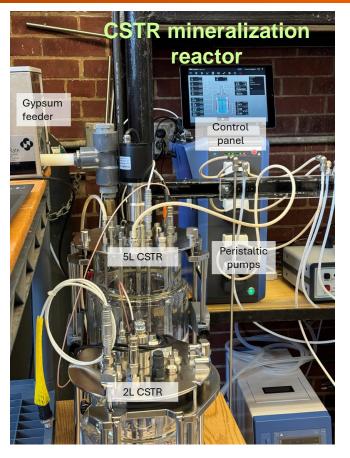
XRF results of raw and purified FGD byproducts								
Sample#	CaO	SO ₃	SiO ₂	Fe ₂ O ₃	MnO	K ₂ O	(Impurities/Ca) x 10 ²	
PPA-raw-air-dried	46.8	51.3	1.5	0.2	0.2	n.d.	2.8	
P-PPA1 (purified)	44.1	55.1	0.8	0.1	n.d.	n.d.	1.3	
PPP-raw-air-dried	47.0	51.0	1.6	0.4	n.d.	n.d.	3.0	
P-PPP1 (purified)	43.7	55.5	0.7	0.1	n.d.	n.d.	1.3	

XRF and XRD results of raw PPA & PPP FGD byproducts and


selected purified samples:

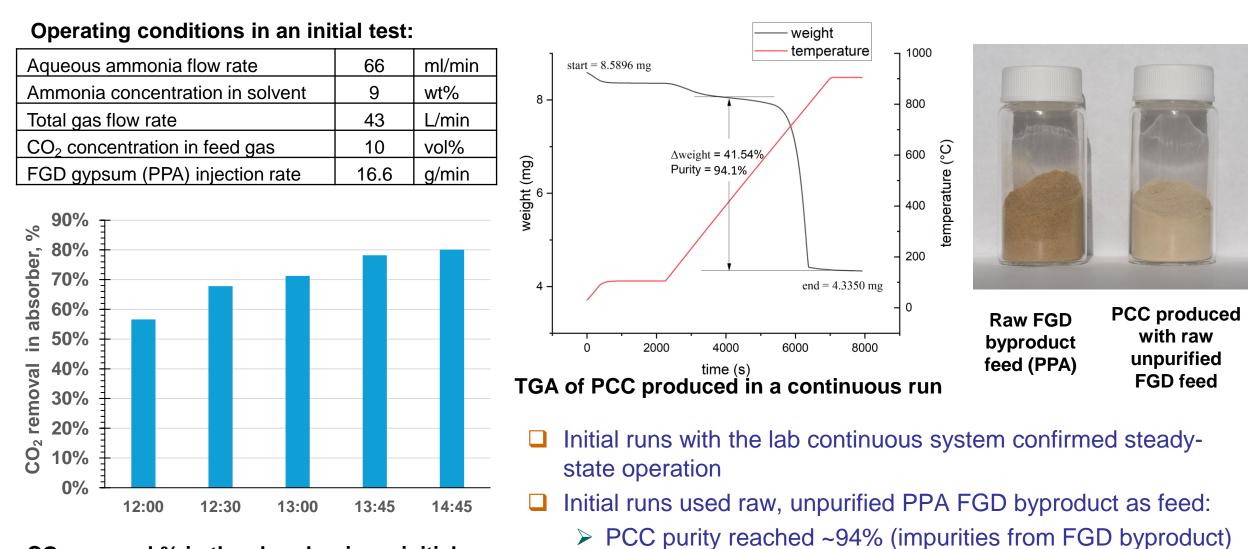
XRD results of raw and purified FGD byproducts					
Sample#	CaSO ₄ .2H ₂ O	CaSO ₄ .1/2H ₂ O	CaSO ₄	SiO ₂	CaSiO ₃
PPA-raw-air-dried	88	n.d.	n.d.	12	n.d.
P-PPA1 (purified)	n.d.	n.d.	96.0	2.0	2.0
PPP-raw-air-dried P-PPP1 (purified)	94.0 n.d.	1.0 0.0	n.d. 93.1	5.0 5.0	n.d. 2.0


XRD results of the PCC produced from purified FGD byproducts under different synthesis conditions


Sample#	Calcite	Aragonite	Vaterite	SiO ₂
PCC1-A1	98.0	0.4	n.d.	1.6
PCC2-A1	98.3	0.3	n.d.	1.4
PCC1-P1	96.2	0.3	2.6	0.9

Particle size distribution of PCC particles produced from purified FGD byproducts

4.3 A Lab 1 LB/hr CO₂ Mineralization System Built for Continuous Testing



- 1 LB/hr CO₂ mineralization system:
- CO₂ absorption: 2 columns installed in sequence; each is a 2"ID ×11'H packed bed with 7.5'H Pro-Pak packing
- CO₂ mineralization: 2 CSTR units (5L & 2L) with a Control Tower for controlling and monitoring T, liquid level, flow rates, stirring, etc.
- Instrumentation and controllers

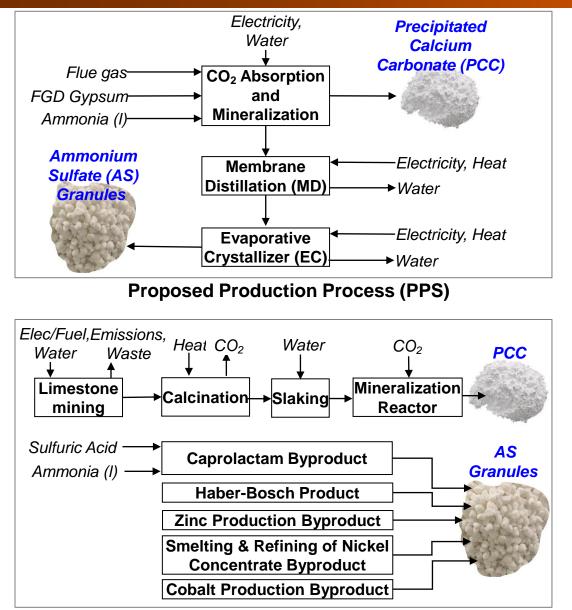
Testing with the Lab Continuous System Has Been Initiated; Testing will Continue to Study Parametric Effects and Process Performance

CO₂ removal % in the absorber in an initial run

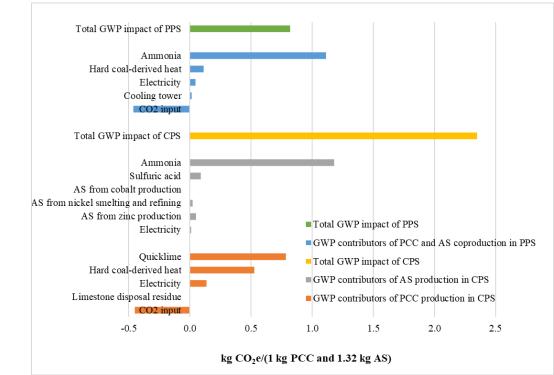
Achieved ~100% conversion of FGD gypsum content

4.4 Initial Techno-Economic Analysis

- Mass & energy (M&E) balances and stream tables generated from process modeling for a 51,000 TPY CO₂ mineralization plant
- Equipment sizing, capital and O&M costs, and net profit assessed:
 - The process is profitable, with a levelized net profit (LNP) of \$346.7/tonne of CO₂


Levelized cost or revenue,

- NH₃ use is a major cost; Profitability remains unaffected if NH₃ and AS fertilizer prices change simultaneously
- PCC sales price assumed at \$75/tonne; More profitable at higher PCC prices


Cost and revenue analysis

4.5 Initial Life Cycle Assessment

Comparison Production Process (CPS)

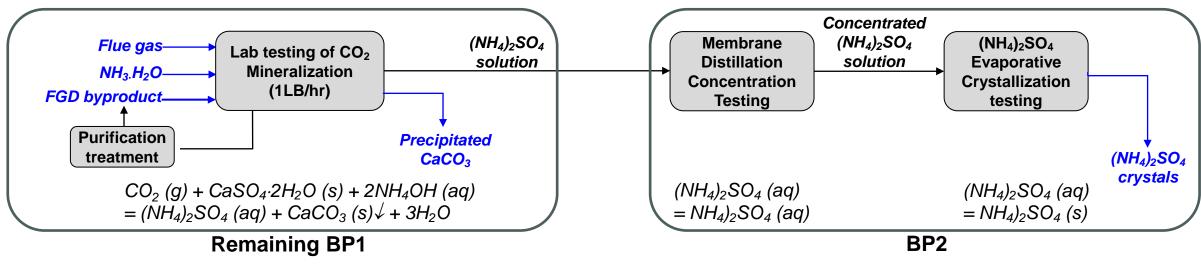
- LCA modeling using openLCA software and NETL CO2U LCI databases (v2.1)
- LCA inventories based on process modeling from TEA
- PPS showed significant environmental advantages vs CPS
- GWP impact of 0.82 kg CO₂-Eq /(1 kg of PCC + 1.32 kg of AS), ~2.9 times < CPS</p>
- Other environmental impacts 1.5-8.6 times < CPS</p>

Comparison of the GWP impact between PPS and CPS

5. Community Benefits / Societal Considerations & Impacts (CB/SCI)

CB/SCI for this lab-scale project primarily involves DEIA planning and execution

	DEIA Goals / Milestones	Progress
1	Engage 2 employees from underrepresented backgrounds in key roles on the project	Goal 1 achieved: <u>2 employees</u> from underrepresented backgrounds played major roles in Project Team
2	Recruit and engage student(s) underrepresented in STEM for ≥ 500 hours in each BP	 Goal 2 in progress as the project proceeds: <u>One underrepresented/women STEM student</u> recruited since the project began (since July 2023); <u>One underrepresented/women STEM student</u> through the ISGS' <u>Paul Edwin Potter Internship Program</u> for 10 weeks in 2024 summer
3	Recruit and develop career opportunities for employee(s) from underrepresented backgrounds or early career stage	 Goal 3 in progress as the project proceeds: <u>Two employees</u> from underrepresented backgrounds or early career stage recruited in BP1
4	Collect one or more FGD byproduct samples from sites in rural or disadvantaged areas	 Goal 4 achieved: <u>One FGD sample</u> collected from an industrial site in a rural / underserved area


6. Lessons Learned

	Lessons learned	Mitigation Strategies
1	Different time scales occur between the CO ₂ absorption reaction and the mineralization reaction (seconds vs. minutes). A combined process configuration might impose process control risks and compromise process performance	 A combined process step should be assessed in comparison to that of separate steps based on both process performance and equipment cost; Kinetics studies and materials characterization can aid in the assessment and comparison
2	Without purification treatment , initial PCC products showed relatively low purity of less than ~80%	 Purification of raw FGD materials with acid extraction has been effective in improving the purity and whiteness of PCC (achieved >97% purity); PCC synthesis under optimized process conditions can further improve its purity
3	Process performance (e.g., conversion, yield) and product specs (e.g., size, purity, morphology) are affected by multiple factors. Work is needed to identify optimal operating conditions to achieve the best performance and product specs	 Detailed parametric studies are required to optimize the process design and operation; Temperature control is critical to ensure the performance of CO₂ absorption into aqueous ammonia and to minimize emissions

7. Plans for Future Testing/Development/Commercialization

Future work in this project

- > Testing of membrane distillation (MD) concentration and evaporative crystallization (EV)
- > Continuous testing of the integrated system (mineralization + MD + EC) in the laboratory
- Finalize TEA and LCA

Aimed to reach TRL4 at the end of this project

Future work after this project

Upon successfully completion of this project, efforts to be furthered to seek support and partnerships to design and test a bench-scale or small pilot-scale prototype unit in a power plant or an FGD waste disposal site to reach TRL5/6

8. Summary

- Lab batch experiments were conducted to study various parametric effects on mineralization reactions, and optimal conditions were identified for the process
- Purification of raw FGD byproduct materials with acid extraction significantly improved PCC purity, reaching >97% compared to ~80% for PCC produced from unpurified raw FGD materials
- A 1 LB/hr CO₂ mineralization system was built at an ISGS lab; Testing with the lab system was initiated and will continue in the following months
- Initial TEA showed that the proposed CO₂ mineralization process was profitable, with a levelized net profit of \$346.7/tonne of CO₂ mineralization
- Initial LCA revealed the environmental advantages of the proposed process; The Global Warming Potential (GMP) impact is 2.9 times lower than conventional processes

Acknowledgements

DOE/NETL Funding Support under Agreement #DE-FE0032256

DOE/NETL Project Managers: Sai Gollakota, Kristy Hahn

Contact Info: Dr. Yongqi Lu Email: <u>yongqilu@Illinois.edu</u> Tel: 217-244-4985