Converting CO₂ in Flue Gas and Alkaline Solid Wastes to Carbon-Negative Alternative Cement for Precast Concrete Units DE-FE0032246

Xinhua Liang, Washington University in St. Louis Hongyan Ma, Missouri University of Science and Technology Shiguang Li, GTI Energy

> 2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Overview

- <u>Funding</u>: \$2,500,000 (DOE: \$2,000,000, cost share: \$500,000)
- Overall Project Performance Dates: July 1, 2023 June 30, 2025
- Overall Project Objectives: Develop an innovative and economical process for mineralizing CO₂ by producing a carbon-negative alternative cement (i.e., OxCem) and deliver a laboratory-scale, prototype system capable of converting 10 kg CO₂ per day for making precast concrete units

Project Participants:

Dr. Xinhua Liang

Dr. Hongyan Ma

Dr. Shiguang Li

Technology Background

- The cement industry around the world emits >4 gigatonne (Gt) CO₂ from >4.5 Gt cement per year (e.g., Portland cement emits ~0.9 t CO₂/t cement) due to the requirement of CaCO₃ decomposition and kiln-processing at 1,450 °C
- Limitation of CO₂ for curing Portland cement concrete to enhance CO₂ uptake via carbonation:
 - Low diffusion rate
 - \blacktriangleright Low capacity of CO₂ penetration/uptake due to low diffusion rate
 - Post-molding carbonation methods can only produce precast concrete, not adaptive to ready-mixed concrete that dominates the industry

Technology Description

Technical Approach

Converting CO₂ to cement forming chemical

- Step I : CO_2 +KOH \rightleftharpoons KHCO₃
- Step II : $KHCO_3+H_2 \rightleftharpoons HCOOK+H_2O$
- Step III : 2 HCOOK \rightleftharpoons K₂C₂O₄+H₂↑
- Step IV : $K_2C_2O_4+2HCl \rightleftharpoons H_2C_2O_4+2KCl$

OxCem formation

Member	Specific Project Roles
W/ 1 · · · · ·	Lead on project management and planning
Washington	Lead on cement-forming chemical synthesis
	Support techno-economic and life-cycle analyses
MISSOURI	• Lead on synthesis of OxCem and development of OxCem-based precast units
TSC	Support techno-economic and life-cycle analyses
	• Lead on process model development, techno-economic and life-cycle
GTI ENERGY solutions that transform	analyses

Novelties and advantages compared to CO₂-absorbing cement and construction product technologies

- High performance catalysts for CO₂ conversion,
- Alternative cement produced by only grinding without calcination or carbonation,
- Permanent carbon mineralization by reacting oxalic acid with alkaline solid wastes one order of magnitude faster than carbonation reactions, and
- Two-fold carbon-uptake capacity by forming oxalates (M²⁺C₂O₄) versus forming carbonates (M²⁺CO₃).

In addition, OxCem will not change the existing practice of making concrete, since it can be used like Portland cement.

Project Scope

Tasks		Decision points and success criteria				
Task 1	Project management and planning	Decision Point		Success Criteria		
Task 2 Task 3	Community Benefits Plan Process model development and initial TEA and LCA		1) 2) 3)	Convert CO ₂ to formate with $\ge 80\%$ formate yield from CO ₂ Convert formate to oxalic acid with a yield of $\ge 75\%$ and purity of $\ge 85\%$ Proof of setting time of OxCem fully		
Task 4	Formate synthesis via bicarbonate hydrogenation	Year one review				
Task 5 Task 6	Formate synthesis scaled up by 20 times Oxalic acid synthesis from formate Production and characterization of			controllable (10 min-to-60 min), compressive strength fully adjustable (20-80 MPa), and		
Task 7	oxalate cement		1)	total shrinkage <200 $\mu\epsilon$		
Task 8	Preparation of one system for oxalic acid synthesis at a scale of 10 kg CO_2 converted/day		2)	kg CO_2 converted/day; Make OxCem masonry blocks at a scale of 10 kg CO_2 converted/day and achieve		
Task 9	Formate synthesis at a scale of 10 kg CO_2 converted/day	Completion of the project		kg CO ₂ converted/day and achieve compressive strength >6,500 psi/45MPa an cumulative mass loss <5.0% after 300 freeze/thaw cycles; and Final TEA and LCA topical reports issued		
Task 10	Oxalic acid synthesis at a scale of 10 kg CO ₂ converted/day		3)			
Task 11	Cement/concrete production at a scale of 10 kg CO ₂ converted/day		5)	Cost goal of \$202/ton OxCem validated.		
Task 12	Final TEA and LCA					

Progress and Current Status of Project: Efficient absorption of CO_2 by KOH solution

Step I : CO_2 +KOH \rightleftharpoons KHCO₃

- By using concentrated KOH solution as absorption solution, CO_2 can be fixed into KHCO₃ and saturated solution continuously.
- The obtained solid KHCO₃ can be directly used in Step II (hydrogenation reaction).

Example: After 24-hour absorption using 100 % CO_2 , 8 L saturated KHCO₃ solution and 2.5 kg KHCO₃ solid were collected.

80% yield of HCOOK was achieved in one 1-L reactor

Filtered and concentrated

Efficient conversion of HCOOK to K₂C₂O₄

Step III : 2 HCOOK \rightarrow K₂C₂O₄+H₂

Reaction conditions: KOH as catalyst, 400°C

Efficient conversion of oxalate to oxalic acid

- Step IV : Oxalate to oxalic acid
- The oxalic acid crystal was characterized by XRD, and the patterns was consistent with $H_2C_2O_4$ ·2H₂O (PDF#14-0832).

Acidification and Separation

Yield of oxalic acid: 89.3% (by weight) (calculate as $H_2C_2O_4 \cdot 2H_2O$) Purity of oxalic acid: 88.4%

Oxalate cement formulated with steel slag: Raw material, proportions, & properties

EA	F St	teel	Sla	g
12	B	-	THE .	
- A				5
	2ª	今谷	24	
	- P			

EAF steel slag

Proportions: W/C, water-to-cement ratio; SS/OA, steel slag-to-oxalic acid mass ratio; B/C, retarder dosage

Oxalate cement formulated with steel slag: Effect of B/C on paste composition

Phase composition (W/C=0.22, SS/OA=3.5)

- Calcium oxalate hydrates are the dominant binder phases in the absence of retarder
- Addition of 5% retarder promotes the formation of ferrous oxalate dihydrate, suppressing the formation of calcium oxalate hydrates

Oxalate cement formulated with steel slag: Effect of SS/OA on paste composition

Phase composition (W/C=0.18, B/C=5%) Dehydration Decomposition 0.20 • FeO 00-002-1180 CaC₂O₄•2.2H₂O 04-011-6002 ÷CaC2O4•H2O 00-014-0789 100 of oxalates A Ca2SiO4 00-009-0351 ⊗ CaC,O4•H,O 00-003-0091 SS/OA:2 ♥ Al₂Ca₃(SiO₄)₃ 00-002-0944 ∇ FeC₂O₄•2H₂O 01-089-7120 Decarbonation 95 SS/OA:3 0.15 $CaC_2O_4 \cdot H_2O$ SS/OA:3.5 90 EAF/OA:2 SS/OA:4 FeC₂O₄·2H₂O 85 0.10 EAF/OA:3 SS/OA:5 EAF/OA:3.5 80 Weight Percent (%) Intensity (a.u.) EAF/OA:4 0.05 EAF/OA:5 DTG (%/°C) 75 0.00 70 65 -0.05 60 55 -0.1050 $CaC_2O_4 \cdot H_2O$ -0.15 FeC₂O 45 FeC₂O₄·2H₂O 40 -0.2010 20 30 40 50 60 70 100 200 300 400 500 600 700 800 0 2θ (°) Temperature (°C) Quantification (wt %)

More ferrous oxalate and calcium oxalate phases are formed at **lower SS/OA ratios**

	Qui	initification (wi.)	(0)
SS/OA ratio	Ca-Oxalates	Fe-Oxalate	
2	29.06	16.67	
3	24.68	7.45	
3.5	22.95	4.95	
4	20.68	4.13	
5	16.65	3.80	

Oxalate cement formulated with steel slag: Preferred binder phase

Age
$$CaC_2O_4 \cdot H_2O$$

 $CaC_2O_4 \cdot XH_2O$ Strength
 $FeC_2O_4 \cdot 2H_2O$

Whewellite (CaC2O4·H2O) is more structurally stable and is responsible for the strength development

B/C ratio
$$CaC_2O_4 \cdot H_2O$$

 $CaC_2O_4 \cdot XH_2O$ Strength FeC_2O_4 $\cdot 2H_2O$

Oxalate cement formulated with olivine: Raw material, proportions, & properties

2

0

2.0

2.5

3.0

3.5

OL/OA mass ratio

4.0

4.5

5.0

10

8

Time (h)

12

Oxalate cement formulated with olivine: Paste composition and microstructure

28 d, OL/OA=4, W/C=0.18

Oxalate cement formulated with olivine: Reaction mechanism

Dissolution of oxalic acid $H_2C_2O_4 \rightarrow HC_2O_4^- + H^+ + 2H_2O$ $HC_2O_4^- \rightarrow C_2O_4^{2-} + H^+$ Dissolution of olivine minerals $Mg_2SiO_4 + 4H^+ \rightarrow 2Mg^{2+} + H_4SiO_{4 (aq)}$ Precipitation of glushinskite $Mg^{2+} + HC_2O_4^- + 2H_2O \rightarrow MgC_2O_4 \cdot 2H_2O + H^+$ $Mg^{2+} + C_2O_4^{2-} + 2H_2O \rightarrow MgC_2O_4 \cdot 2H_2O$ Formation of amorphous silica $H_4SiO_4_{(aq)} \rightarrow SiO_2_{(qel)} + 2H_2O$ **Global reaction**

 $Mg_2SiO_4 + 2H_2C_2O_4 + 2H_2O \rightarrow 2MgC_2O_4 \cdot 2H_2O + SiO_{2 (gel)}$

Oxalate cement: Microstructure and intensive carbon uptake

Si

Summary of Community Benefits Plan

DEIA Plan

- Disseminating research results and development through outreach programs, such as organizing workshops
 - ✓ Completed an evidence-based implicit bias training for key personnel
 - ✓ Organized one half-day workshop (7/26/2024, "Storing CO₂ in Infrastructure Materials to Combat Climate Change") for high school students
- Inclusion of participants from underrepresented groups
 - ✓ One female summer intern joined the team
 - ✓ Recruited two female graduate students and will join the team in fall 2024

Education and Workforce Development Plan

- Educate and train the future workforce so that they understand the significance and methodologies to covert CO₂ into cement-forming chemicals, manufacture new-concept cements, and integrate these cements into the cement toolkit of future engineers
 - ✓ Both undergraduate and graduate students are being trained

Plans for Future Testing/Development/ Commercialization

Plan for Future Testing of This Project:

- Oxalic acid synthesis from CO₂ at a larger scale
- Improve performance of OxCem

Technology Development Path:

Summary

- 100% CO₂ conversion could be achieved using base solution absorption.
- CO_2 could be efficiently converted to oxalic acid with overall yield >50%.
- Optimized OxCem attained sufficient setting time (>10 min) and robust compressive strength (20-50 MPa).
- Reaction between oxalic acid with olivine/steel slag led to the rapid formation of Mg/Ca/Fe oxalates that not only acted as the cementing phases but sequestered carbon stably.

Acknowledgements

• Financial and technical support

DOE NETL: Kara Zabetakis