
Converting CO2 in Flue Gas and Alkaline 
Solid Wastes to Carbon-Negative Alternative 

Cement for Precast Concrete Units
DE-FE0032246

Xinhua Liang, Washington University in St. Louis
Hongyan Ma, Missouri University of Science and Technology 

Shiguang Li, GTI Energy

2024 FECM/NETL Carbon Management Research Project Review Meeting
August 5 – 9, 2024



2

Project Overview
 Funding: $2,500,000 (DOE: $2,000,000, cost share: $500,000)

 Overall Project Performance Dates: July 1, 2023 – June 30, 2025

 Overall Project Objectives: Develop an innovative and economical process for 
mineralizing CO2 by producing a carbon-negative alternative cement (i.e., 
OxCem) and deliver a laboratory-scale, prototype system capable of converting 
10 kg CO2 per day for making precast concrete units

 Project Participants:
Dr. Xinhua Liang

Dr. Hongyan Ma

Dr. Shiguang Li



Technology Background
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 The cement industry around the world emits >4 gigatonne (Gt) CO2 from 
>4.5 Gt cement per year (e.g., Portland cement emits ~0.9 t CO2/t cement) 
due to the requirement of CaCO3 decomposition and kiln-processing at 
1,450 ºC

 Limitation of CO2 for curing Portland cement concrete to enhance CO2 
uptake via carbonation: 

 Low diffusion rate
 Low capacity of CO2 penetration/uptake due to low diffusion rate
 Post-molding carbonation methods can only produce precast 

concrete, not adaptive to ready-mixed concrete that dominates the 
industry



Technology Description
CO2 from point source, e.g., 
cement plant, steel plant

Alkaline solid wastes, e.g., 
steel slag

Cement-forming chemical
Cement-forming base 

phases by grinding, e.g., 
CaO/MgO, (Ca,Fe)2SiO4

Carbon-negative Acid-Base Cements (OxCem)

Admixtures

Proportioning and Co-Grinding

Precast Concrete Units (e.g., concrete blocks)

MO + H2C2O4 + xH2O  MC2O4·(x+1)H2O  
(MO)y·SiO2 + yH2C2O4 + xyH2O  yMC2O4·(x+1)H2O + SiO2 (gel)
where M is Ca, Mg, Fe2+, or other elements, x = 0, 1, or 2, and y = 1, 2, or 3 4



Technical Approach
Converting CO2 to cement forming chemical

 Step I：   CO2+KOH⇌KHCO3

 Step II：  KHCO3+H2⇌HCOOK+H2O

 Step III： 2 HCOOK⇌K2C2O4+H2↑

 Step IV： K2C2O4+2HCl⇌H2C2O4+2KCl

OxCem formation    
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Member Specific Project Roles 

 

• Lead on project management and planning 
• Lead on cement-forming chemical synthesis 
• Support techno-economic and life-cycle analyses 

 
• Lead on synthesis of OxCem and development of OxCem-based precast units 
• Support techno-economic and life-cycle analyses 

 
• Lead on process model development, techno-economic and life-cycle 

analyses 



Novelties and advantages compared to CO2-absorbing 
cement and construction product technologies 

 High performance catalysts for CO2 conversion, 
 Alternative cement produced by only grinding without calcination or 

carbonation, 
 Permanent carbon mineralization by reacting oxalic acid with alkaline 

solid wastes one order of magnitude faster than carbonation reactions, and 
 Two-fold carbon-uptake capacity by forming oxalates (M2+C2O4) versus 

forming carbonates (M2+CO3). 

In addition, OxCem will not change the existing practice of making concrete, 
since it can be used like Portland cement.
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Project Scope
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Task 1 Project management and planning
Task 2 Community Benefits Plan

Task 3 Process model development and initial 
TEA and LCA

Task 4 Formate synthesis via bicarbonate 
hydrogenation

Task 5 Formate synthesis scaled up by 20 times
Task 6 Oxalic acid synthesis from formate

Task 7 Production and characterization of 
oxalate cement

Task 8
Preparation of one system for oxalic 
acid synthesis at a scale of 10 kg CO2 
converted/day 

Task 9 Formate synthesis at a scale of 10 kg 
CO2 converted/day

Task 10 Oxalic acid synthesis at a scale of 10 kg 
CO2 converted/day

Task 11 Cement/concrete production at a scale 
of 10 kg CO2 converted/day

Task 12 Final TEA and LCA

Decision points and success criteriaTasks
Decision Point Success Criteria

Year one 
review

1) Convert CO2 to formate with ≥80% formate 
yield from CO2

2) Convert formate to oxalic acid with a yield of 
≥75% and purity of ≥85%  

3) Proof of setting time of OxCem fully 
controllable (10 min-to-60 min), compressive 
strength fully adjustable (20-80 MPa), and 
total shrinkage <200 με

Completion of 
the project

1) Complete formate synthesis on a scale of 10 
kg CO2 converted/day; 

2) Make OxCem masonry blocks at a scale of 10 
kg CO2 converted/day and achieve 
compressive strength >6,500 psi/45MPa and 
cumulative mass loss <5.0% after 300 
freeze/thaw cycles; and

3) Final TEA and LCA topical reports issued. 
Cost goal of $202/ton OxCem validated.



Progress and Current Status of Project: 
Efficient absorption of CO2 by KOH solution

• By using concentrated KOH 
solution as absorption solution, 
CO2 can be fixed into KHCO3 and 
saturated solution continuously.

• The obtained solid KHCO3 can be 
directly used in Step II 
(hydrogenation reaction).

 Step I：CO2+KOH⇌KHCO3

Example: After 24-hour absorption using 100 % CO2, 
8 L saturated KHCO3 solution and 2.5 kg KHCO3 solid 
were collected.
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80% yield of HCOOK was achieved in 
one 1-L reactor

Reaction Conditions:
 Mass: 40 g KHCO3
Temperature: 150 ℃
 Pressure: 6 MPa H2 HCOOK

Dimethyl sulfoxide

 HCOOK yield in solution is 81%.

Filtered and concentrated

 HCOOK purity is 87%.

1.68 g solid is dissolved in 7.5 mL H2O for NMR test.

 Step II：
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KHCO3 +H2⇌HCOOK+H2O



Efficient conversion of HCOOK to K2C2O4

Reaction conditions: KOH as catalyst, 400℃

 Step III：
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2 HCOOK→K2C2O4+H2



Efficient conversion of oxalate to oxalic acid
 Step IV：Oxalate to oxalic acid
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• The oxalic acid crystal was 
characterized by XRD, and the 
patterns was consistent with 
H2C2O4∙2H2O (PDF#14-0832).
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Oxalate cement formulated with steel slag: 
Raw material, proportions, & properties

MgO 5.649
Al2O3 10.161
SiO2 14.977
CaO 29.437
MnO 5.576

FeO/Fe2O3 30.362
other 3.838

wt.%

Ca/Mg/Fe 
>65%

EAF Steel Slag

Proportions: W/C, water-to-cement ratio; SS/OA, steel 
slag-to-oxalic acid mass ratio; B/C, retarder dosage

EAF steel slag
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FeC2O4·2H2O 

Dehydration

Decomposition 
of oxalates

CaC2O4·H2O CaC2O4

FeC2O4

Decarbonation

 Calcium oxalate hydrates are the dominant binder phases in the absence of retarder
 Addition of 5% retarder promotes the formation of ferrous oxalate dihydrate, suppressing the 

formation of calcium oxalate hydrates 

FeC2O4·2H2O 
CaC2O4·H2O 

Phase composition (W/C=0.22, SS/OA=3.5)

Oxalate cement formulated with steel slag: 
Effect of B/C on paste composition
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FeC2O4·2H2O 

Dehydration Decomposition 
of oxalates

CaC2O4·H2O 

CaC2O4

FeC2O4

Decarbonation

 More ferrous oxalate and calcium oxalate phases 
are formed at lower SS/OA ratios

SS/OA ratio Ca-Oxalates Fe-Oxalate
2 29.06 16.67
3 24.68 7.45

3.5 22.95 4.95
4 20.68 4.13
5 16.65 3.80

Quantification (wt.%)

Phase composition (W/C=0.18, B/C=5%)

FeC2O4·2H2O 
CaC2O4·H2O 

Oxalate cement formulated with steel slag: 
Effect of SS/OA on paste composition
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Whewellite (CaC2O4·H2O) is more 
structurally stable and is responsible for the 
strength development

QXRD

Oxalate cement formulated with steel slag: 
Preferred binder phase
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Raw materials

Grinding
Olivine sand Olivine powder

d50=16.6µm

Proportion: OL/OA, olivine-to-oxalic acid mass ratio;
                           W/C; B/C

Oxalate cement formulated with olivine: 
Raw material, proportions, & properties
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28 d, W/C=0.18XRD QXRD TG

28 d, OL/OA=4, W/C=0.18

Oxalate cement formulated with olivine: 
Paste composition and microstructure
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 Dissolution of oxalic acid
H2C2O4 → HC2O4

‒ + H+ + 2H2O
HC2O4

‒ → C2O4
2‒ + H+

 Dissolution of olivine minerals
Mg2SiO4 + 4H+ → 2Mg2+ + H4SiO4 (aq)

 Precipitation of glushinskite
Mg2+ + HC2O4

‒ + 2H2O → MgC2O4·2H2O + H+

Mg2+ + C2O4
2‒ + 2H2O → MgC2O4·2H2O

 Formation of amorphous silica
H4SiO4 (aq) → SiO2 (gel) + 2H2O

Global reaction
Mg2SiO4 + 2H2C2O4 + 2H2O → 2MgC2O4·2H2O + SiO2 (gel) 

Oxalate cement formulated with olivine: 
Reaction mechanism
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Oxalate cement: 
Microstructure and intensive carbon uptake
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Summary of Community Benefits Plan

DEIA Plan
 Disseminating research results and development through outreach programs, such as 

organizing workshops 
 Completed an evidence-based implicit bias training for key personnel 
 Organized one half-day workshop (7/26/2024, “Storing CO2 in Infrastructure 

Materials to Combat Climate Change”) for high school students
 Inclusion of participants from underrepresented groups

 One female summer intern joined the team 
 Recruited two female graduate students and will join the team in fall 2024

Education and Workforce Development Plan
 Educate and train the future workforce so that they understand the significance and 

methodologies to covert CO2 into cement-forming chemicals, manufacture new-concept 
cements, and integrate these cements into the cement toolkit of future engineers

 Both undergraduate and graduate students are being trained
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Plans for Future Testing/Development/
Commercialization 

Technology Development Path:

Year

Sc
al

e

2023 2024 2025 2026 2027 2028 2029 2030 2031

Final goal
Commercialization 

of OxCem

Industry partner (TBD)

Engineering company (TBD)

Industry partner (TBD)

Engineering company (TBD)
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Plan for Future Testing of This Project:
 Oxalic acid synthesis from CO2 at a larger scale
 Improve performance of OxCem



Summary

 100% CO2 conversion could be achieved using base solution 
absorption.

 CO2 could be efficiently converted to oxalic acid with overall yield 
>50%.

 Optimized OxCem attained sufficient setting time (>10 min) and 
robust compressive strength (20-50 MPa).

 Reaction between oxalic acid with olivine/steel slag led to the 
rapid formation of Mg/Ca/Fe oxalates that not only acted as the 
cementing phases but sequestered carbon stably.
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