
<u>Integrated and Sustainable Pathways for CO₂ Capture and Mineralization</u> with <u>Recovery of High Value Metals and Filler Materials (INSPIRE)</u> DE – FE0032398 (Managed by Kara Zabetakis)

Cornell

Engineering

Greeshma Gadikota | Sustainable Energy and Resource Recovery Group | Civil and Environmental Engineering | Cornell University DOE FECM Project Update Meeting | August 7, 2024

How do we innovate while managing the need to meet our energy and resource demand in response to a changing climate?

INSPIRE Team

Greeshma Gadikota PI, Cornell University Associate Professor

Key Personnel

T. Alan Hatton Co-PI, MIT Professor

David Heldebrant Co-PI, PNNL Chief Scientist

Julien Leclaire Co-PI, UCBL Professor

Deepika Malhotra Senior Scientist PNNL

Quin Miller Geochemist PNNL

Key Team Members

Deborah Romito, UCBL Franck Ulm, UCBL Yuan Jiang, PNNL

> Industry Partners Novelis Inc | Nucor

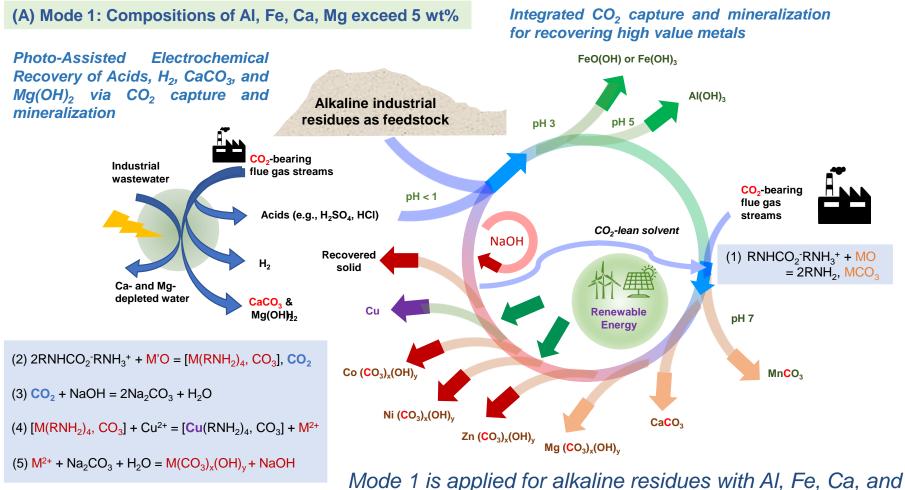
INSPIRE Team at Cornell University

Greeshma Gadikota PI, Cornell University Associate Professor

Porus Jadhav PhD student Cornell University

Dhruv Mehta PhD student Cornell University

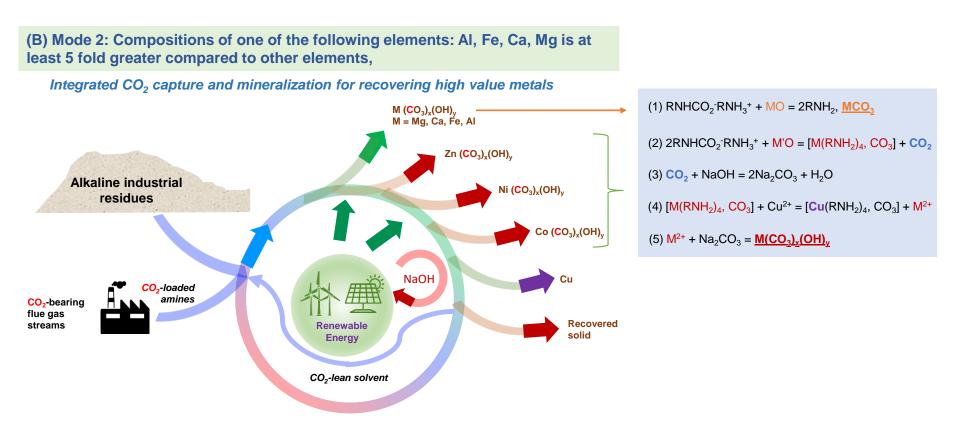
INSPIRE Aim and Objectives


The **aim** of INSPIRE is to develop molecularly integrated CO_2 capture and mineralization pathways with inherent recovery of high value metals using multifunctional solvents and electrochemically mediated transformations.

The *two primary objectives* of the INSPIRE technology are to:

- (i) demonstrate the recovery of acids (alongside CaCO₃, Mg(OH)₂ and H₂) from industrial wastewater for recovering Fe- and Al-rich solids followed by the use of CO₂-bearing solids for recovering Ca- and Mg-carbonates, and electrochemical separation of base metals such as Ni, Zn, Co as carbonates, and Cu in Mode 1 in alkaline industrial residues bearing more than 5 wt% of (non-carbonate) Al, Fe, Mg, and Ca-components,
- (i) develop an integrated approach for the recovery of Ni, Zn, Co as carbonates, Cu metal, and solid carbonate product bearing Ca, Mg, Fe, or Al in Mode 2 in alkaline industrial residues where a single metal component is dominant (e.g., Al is at least 5-fold greater compared to other major elements such as Fe, Mg, Ca).

INSPIRE Mode 1: Metal Recovery and Carbon Mineralization


Schematic representation of the INSPIRE technology for selective metal recovery integrated with CO₂ capture and conversion.

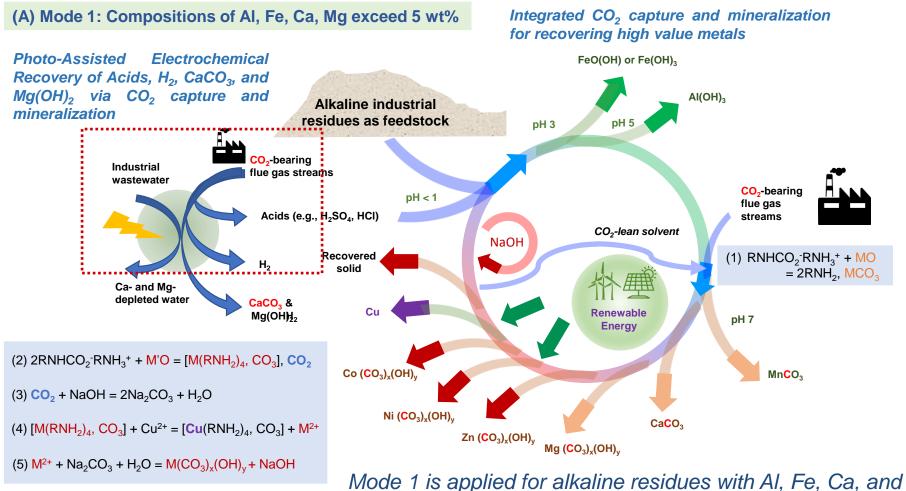
Mg content exceeding 5 wt%

INSPIRE Mode 2: Metal Recovery and Carbon Mineralization

Schematic representation of the INSPIRE technology for selective metal recovery integrated with CO₂ capture and conversion.

Mode 2 is applied for alkaline residues with AI, Fe, Ca, and Mg content at least 5 fold greater compared to other elements

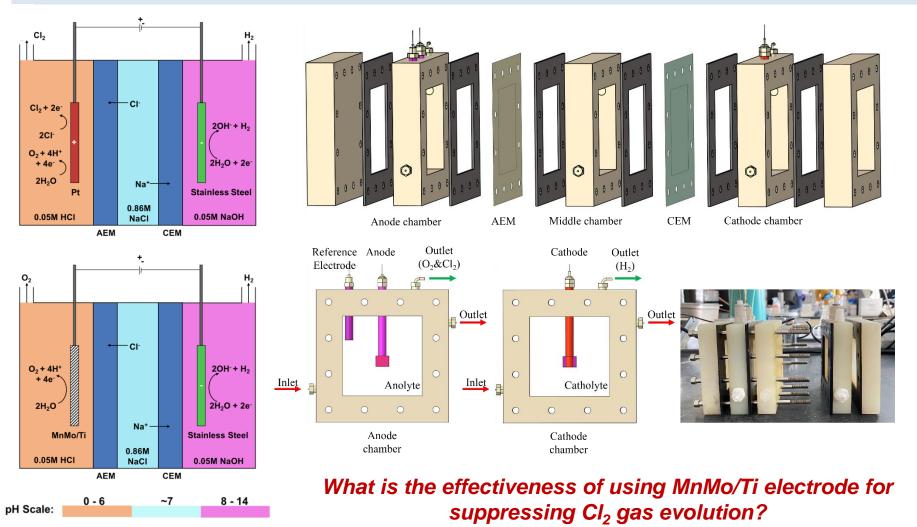
Key Tasks and Subtasks


	Task & Subtasks		Yea	ır 1			Yea	r 2	
	Quarter	1	2	3	4	1	2	3	4
1	Project Management and Planning (including kick-off meeting)	1.1							
2	Material characterization, solvent synthesis and identify solvents								
	2.1 Characterize chemical and morphological features of alkaline materials	2.1							
	2.2 Synthesize third generation solvents and determine CO ₂ capture behavior		2.2						
	2.3 Determine the appropriate solvents based on thermodynamics and kinetics			2.3					
3	Metal recovery using CO ₂ -bearing solvents and electrochemical approaches				3.1S				
4	Extractive carbon mineralization for Mn, Ca, and Mg recovery				4.1				
5	Experimental setup for electromediated stripping, recovery, and solvent regeneration				5.1				
6	Develop frameworks for techno-economic assessments and life cycle analyses								
	6.1 Develop frameworks for process-scale analyses and TEA				6.1				
	6.2 Develop a framework to assess life cycle impacts				6.2				
C1	Engage K-12 students in science education and communication	_			C1.1				
7	Recover Al – and Fe – bearing solids					7.1			
8	Recover Mn-, Ca-, and Mg-bearing carbonates								
	8.1 Phase separation, compositional analyses, quantification of CO ₂ capture and mineralization						8.1		
	8.2 Produce Ca-carbonate via integrated CO ₂ capture and conversion							8	8.2
9	Electromediated critical metal stripping, recovery, and solvent regeneration								
	9.1 Selective Ni stripping by Cu ²⁺ ion substitution						9.1		
	9.2 Selective Ni and Co stripping by Cu2+ substitution and metal recovery by carbon mineralization							9.29	.3
10	Conduct whole system TEA and LCA								
10	10.1 Evaluate the overall techno-economic impacts							1	0.1
	10.2 Assess whole system life cycle impacts							_	0.2
C2	Expand internship opportunities for underrepresented students and women								C2.1
C3	Engage women, rural communities, and general public through symposia organization and presentations							(C 3.1

Milestones

	Туре	Milestones
1. Project Management	Y1, Q1	1.1. Develop the communication plan and other deliverables and organize the project kick-off meeting
2. Material characterization, solvent synthesis and identification for metal recovery	Y1, Q1	2.1. Quantify the chemical compositions and morphological features of the alkaline industrial residues from secondary aluminum processing and steel making
	Y1, Q2	2.2. Synthesize third generation solvents and quantify CO_2 capture behavior
	Y1, Q3	2.3. Identify 2-3 appropriate solvent systems
3. Metal recovery	Y1, Q4	3.1. Leach > 60% of Ni and > 80% of Ca from select alkaline industrial residues - SMART; Go – No Go Milestone
4. Extractive carbon mineralization of Mn, Ca, and Mg recovery	Y1, Q4	4.1. Achieve selective separation of Mn, Ca, and Mg-carbonates
5. Experimental setup for electromediated separation	Y1, Q3	5.1. Demonstrate a working experimental setup for separating metals of interest
6. Develop frameworks for TEA and LCA	Y1, Q4	6.1. Complete the TEA framework for INSPIRE
	Y1, Q4	6.2. Complete the LCA framework for INSPIRE
7. Recover Al- and Fe-bearing solids	Y2, Q1	7.1. Achieve the precipitation of AI- and Fe-rich solids from select alkaline industrial residues with yields > 60% - SMART
8. Recover Mn-, Ca-, and Mg-bearing carbonates	Y2, Q2	8.1. Recover > 90% of select solvents after Mn,Ca, and Mg- carbonate precipitation - SMART
	Y2, Q4	8.2. Produce > 10 kg of $CaCO_3$ based on optimal conditions - SMART
9: Electromediated metal recovery	Y2, Q3	9.1 Selective electrochemical recovery of Ni, Co, Zn-carbonates
	Y2, Q4	9.2. Develop solvent regeneration strategy
10: Conduct whole system TEA and LCA	Y2, Q4	10.1. Final TEA for the fully integrated INSPIRE technology
	Y2, Q4	10.2. Final LCA for the fully integrated INSPIRE technology

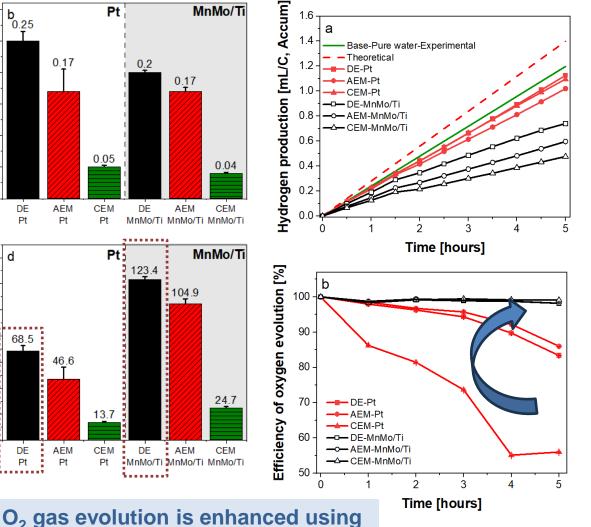
INSPIRE Mode 1: Metal Recovery and Carbon Mineralization

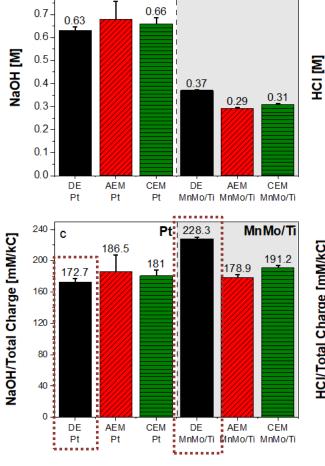

Schematic representation of the INSPIRE technology for selective metal recovery integrated with CO₂ capture and conversion.

Mg content exceeding 5 wt%

Advances in Direct Electrolysis of Brine

How can we produce acids, bases, H₂, and O₂ by harnessing brine and electricity while suppressing Cl₂ gas evolution?

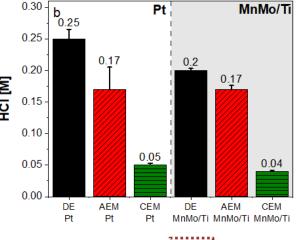

Kim, Lu, Ochonma, and Gadikota, ACS Energy and Fuels, 2024 (Invited Article)

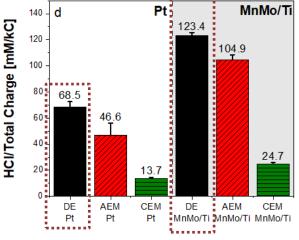

Advances in Direct Electrolysis of Brine

NaOH and HCI yields normalized to charge are higher using MnMo/Ti vs. Pt electrode

MnMo/Ti

Lower H₂ yield using **MnMo/Ti electrode**

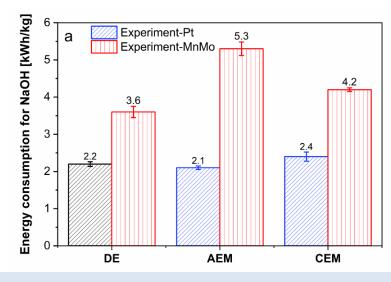



Pt

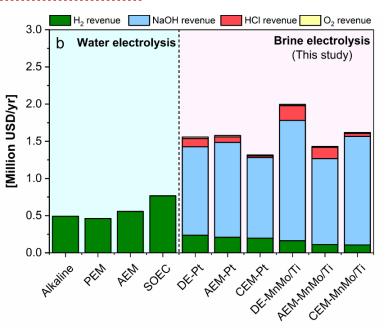
0.68

0.8-

а

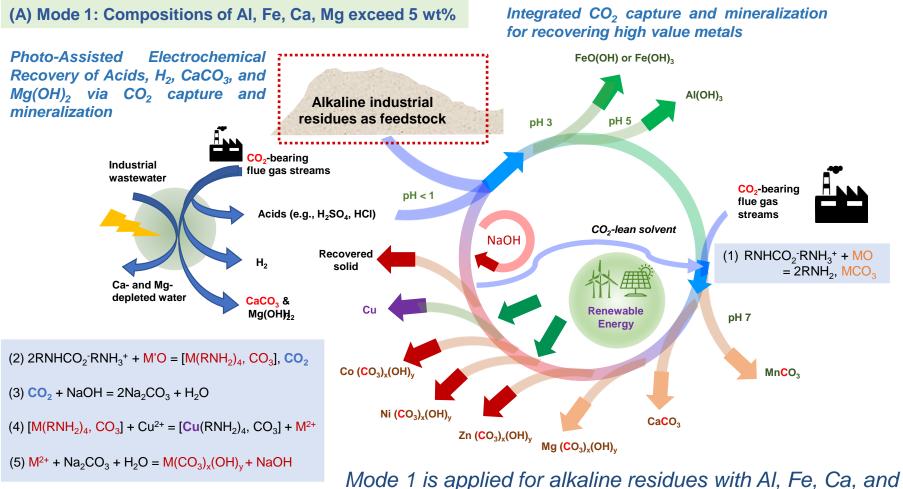

using MnMo/Ti electrode

Advances in Direct Electrolysis of Brine


Calculated oxygen evolution efficiencies using various electrodes and membrane configurations

Anode	System	Total Coulomb [C]	Cl ₂ [mol]	Cl ₂ Evolution Efficiency [%]	O₂ Evolution Efficiency [%]
Pt	DE	3,647	0.0031	16.6	83.4
Pt	AEM	3,647	0.0026	13.4	86.0
Pt	CEM	3,647	0.0083	44.0	56.0
MnMo/Ti	DE	1,621	0.0002	1.8	98.2
MnMo/Ti	AEM	1,621	0.0002	1.8	98.2
MnMo/Ti	CEM	1,621	0.0001	0.9	99.1

Significant decrease in Cl₂ gas evolution efficiency and enhancement in O₂ gas evolution efficiency using MnMo/Ti electrode compared to Pt electrode


Energy consumption for producing NaOH is higher using MnMo/Ti electrode but economics are more favorable with brine electrolysis compared to water electrolysis!

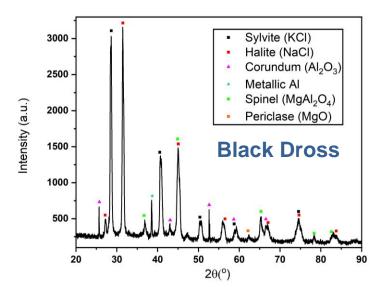
Ongoing work involves developing novel electrodes for direct electrolysis!

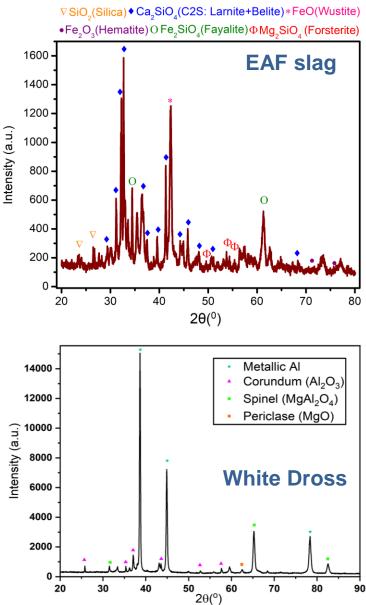
INSPIRE Mode 1: Metal Recovery and Carbon Mineralization

Schematic representation of the INSPIRE technology for selective metal recovery integrated with CO₂ capture and conversion.

Mg content exceeding 5 wt%

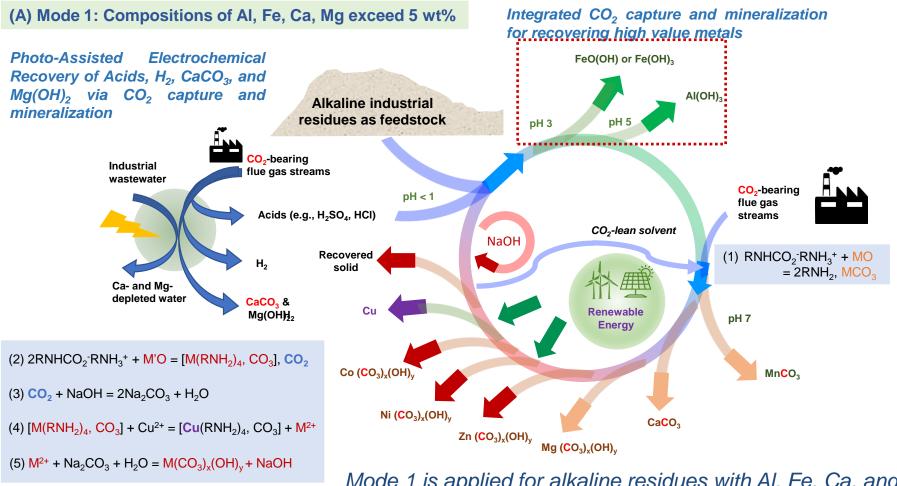
Milestone 2.1: Quantify the chemical compositions and morphological features of the alkaline industrial residues from secondary aluminum processing and steel making


	⁻ Steel E Slag	AF Ladle Slag
Major Elements	Wt.(%)	Wt.(%)
CaO	33.8	33.4
MgO	11.6	31.3
Na ₂ O	0.04	0.08
K ₂ O	0.04	0.1
Al ₂ O ₃	7.23	11.2
Fe ₂ O ₃	21.4	5.35
SiO ₂	18	9.66
MnO	4.68	0.92
ZnO		
Cr_2O_3	1.4	0.11
NiO		
CuO		

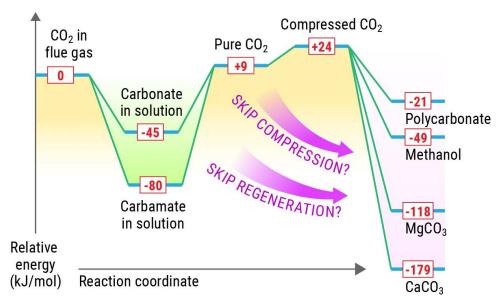

Black	Dross	White	Dross			
Major elements	Wt (% oxides)	Major elements	Wt % (oxides)			
SiO ₂	12.29	SiO ₂	n.d.			
TiO ₂	2.381	TiO ₂	0.089			
Al ₂ O ₃	38.40	Al ₂ O ₃	104.22			
FeO*	1.11	FeO*	0.28			
MnO	0.978	MnO	0.213			
MgO	11.77	MgO	3.90			
CaO	2.10	CaO	0.15			
Na ₂ O	13.44	Na ₂ O	0.11			
K ₂ O	9.13	K ₂ O	0.22			
P ₂ O ₅	0.138	P_2O_5	0.011			
LOI (%)	-0.17	LOI (%)	-10.69			
Total	99.13	Total	99.12			

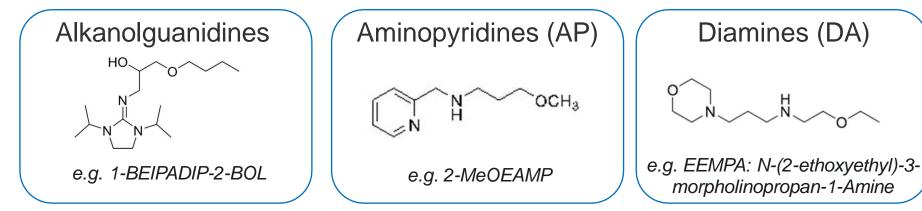
Compositions of Ca- and Mg-bearing content exceeds 40 %. Compositions of Ca- and Mg-bearing content is less than 20 %.

Ultramafic mine tailings can contain ~ 40 - 50% SiO₂, and 30 - 40% Mg-oxide, 5 - 15% Fe-oxides in addition to ~ 100 - 2000 ppm of Ni Cu ~ 200 – 500 ppm; Ni ~ 50 – 100 ppm; Cr ~ 50 – 200 ppm **Milestone 2.1:** Quantify the chemical compositions and morphological features of the alkaline industrial residues from secondary aluminum processing and steel making


- Evidence of Ca-, Mg-, and Fe-silicates, silica, and iron oxide phases in EAF slags
- Evidence of soluble KCI and NaCI phases in addition to insoluble Al₂O₃, Al, MgO, and MgAl₂O₄ phases in black dross
- Evidence of metallic AI, Al2O₃, MgAl₂O₄, and MgO phases in white dross.
- Significant differences in the compositions of the slags and dross materials motivate advances in customized pathways to recover high value products

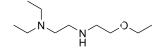
INSPIRE Mode 1: Metal Recovery and Carbon Mineralization

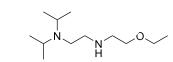

Schematic representation of the INSPIRE technology for selective metal recovery integrated with CO₂ capture and conversion.


Mode 1 is applied for alkaline residues with AI, Fe, Ca, and Mg content exceeding 5 wt%

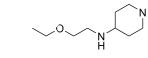
Task 2. Material Characterization, Solvent Synthesis, and Determination of Key Solvents

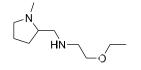
Water-lean solvents are a prime medium for integration of capture and mineralization and metal recovery.

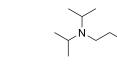

- Overall process is catalytic with respect to solvent
- Catalytic exothermic mineralization offsets endothermic solvent regeneration
- Bypasses CO₂ compression
- PNNL's single-component water-lean solvents are tunable bi-dentate ligands for cation chelation

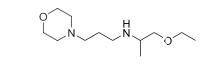


Brickett et al. Chem. Sci., 2022,13, 6445-6456

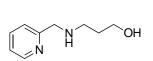

Task 2. Material Characterization, Solvent Synthesis, and Determination of Key Solvents

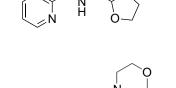

Towards Designing Candidate Solvents: PNNL has libraries of available solvents from three classes to select from and reduced-order models enable us to quickly design and synthesize solvents with tailored properties (as needed).

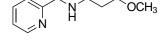


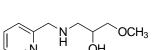


∧ .N ↓






Syntheses are designed for use of off-the-shelf reagents.

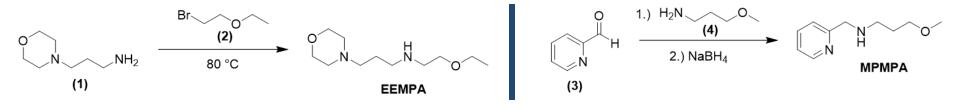


2-EEMPA w/wo CO₂ + Ni and Co

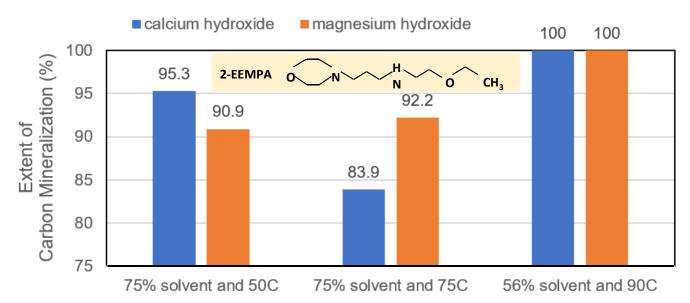
Conductance

Design Criteria:

Hardness

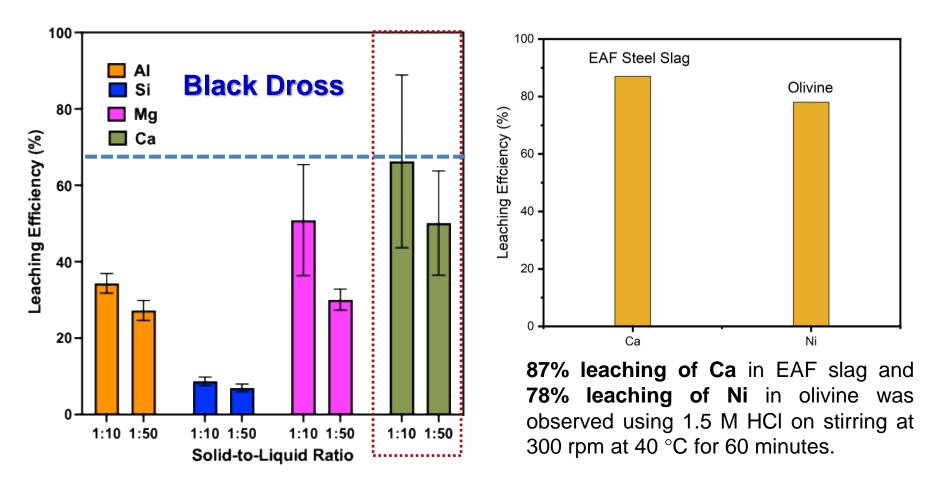

pKa

- Binding enthalpy
 - -60 to -85 kJ/mol


Cantu et. al. ChemSusChem., 2020, DOI: 10.1002/cssc.202000724.

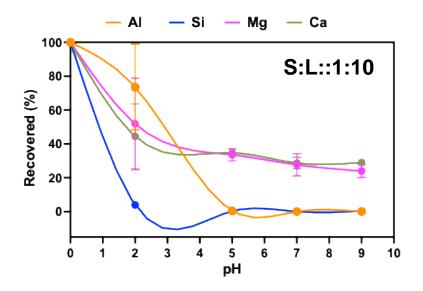
Milestone: 2.2: Synthesize third generation solvents and quantify CO_2 capture behavior and **2.3:** Identify 2 – 3 appropriate solvent systems

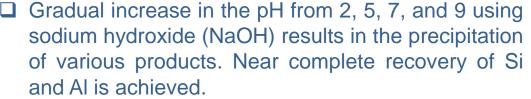
Water – lean solvents developed at PNNL


Evidence of the carbon mineralization of $Ca(OH)_2$ and $Mg(OH)_2$ using 2-EEMPA in gas – liquid – solid mode. Experimental conditions include pCO₂ of 1 atm, 15 wt% solid in a well-stirred slurry environment

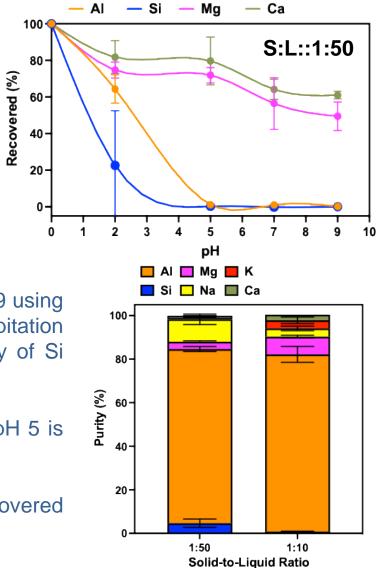
The team will build on these studies for the selective separation of Mn, Ca, and Mg-bearing carbonates in INSPIRE.

Milestone 3.1: Leach > 60% of Ni and > 80% of Ca from select alkaline industrial residues - SMART; Go – No Go Milestone

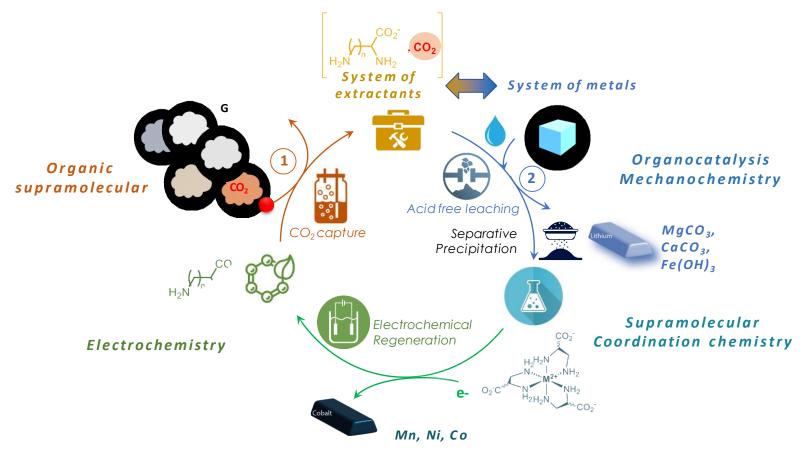

Inorganic acid driven leaching



Dissolution of black dross in a 2 M HCl solution at 50 °C and 300 rpm for two hours


Task 3. Metal Recovery

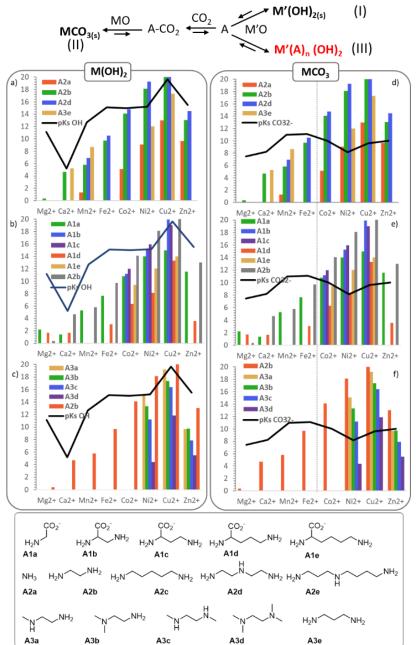
Decreasing concentrations => precipitation of dissolved ions


- High content of AI in the solid recovered at pH 5 is noted.
- Similar quantity of AI is noted in the recovered product with S:L::1:50 and 1:10

Task 3. Metal Leaching using CO₂-Bearing Solvents and Electrochemical Approaches

Acid – free leaching and metal recovery

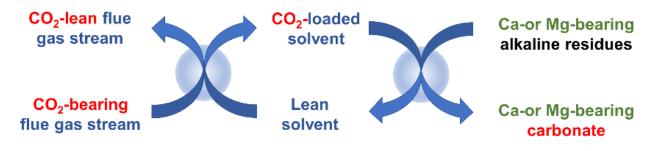
Advance sustainable pathways to recover energy critical metals by harnessing selective chelation ability of specific ligands.


Task 3. Metal Leaching using CO_2 -Bearing Solvents and Electrochemical Approaches

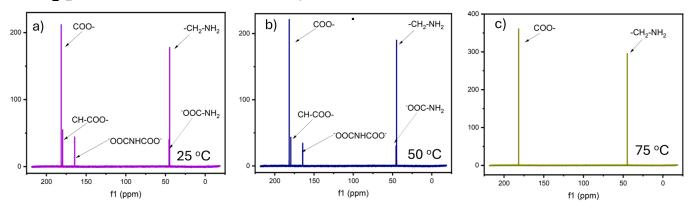
Harness differences in the binding affinities of various metals for ligands to drive metal separations

Thermodynamic constants of competing solvent-metal complexation (columns) vs hydroxylation (black line) (a-c) and carbonation (d-f) (black line).

Bottom: water-lean solvent models (A3), polyamines (A2) and aminoacid solvents (A1) reported in the literature.

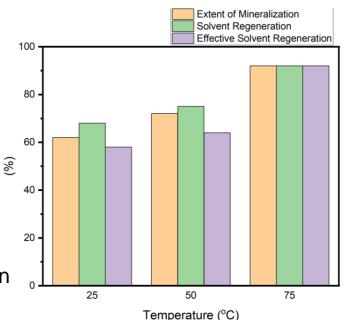

Next steps: Advance experimental efforts to determine the effectiveness of various solvents in effectively capturing energy relevant metals.

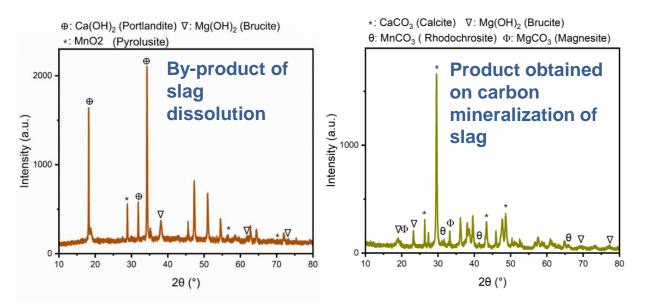
23

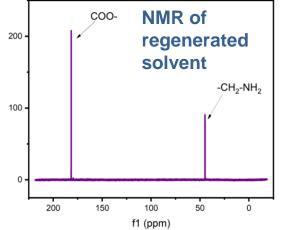

Task 4. Extractive carbon mineralization of Mn, Ca, and Mg recovery

Milestone 4.1. Achieve selective separation of Mn, Ca, and Mg-carbonates

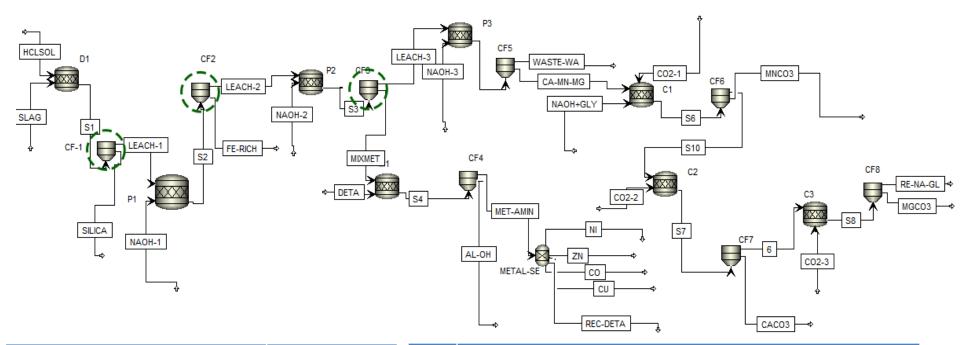
How do we quantify solvent regeneration?


¹³C NMR comparison for solvents recovered after mineralization of Ca(OH)₂ using CO₂ pre-loaded 2.5 M Na-Glycinate at: a) 25^oC, b) 50^oC and c) 75^oC.

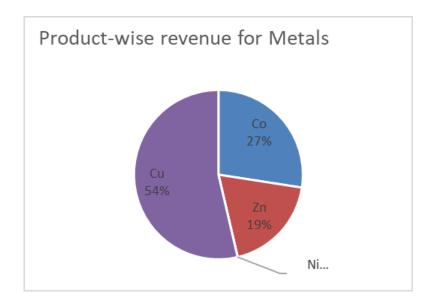


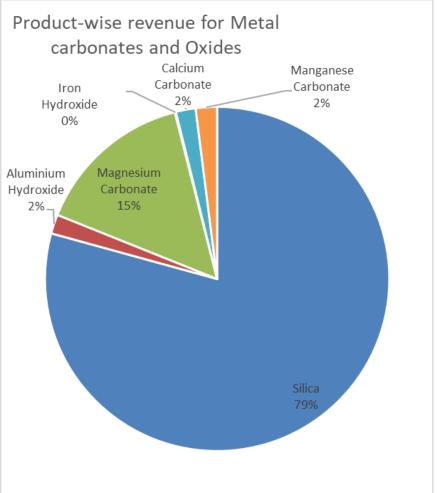

 $\begin{array}{l} H_2NCH_2COO^- + CO_2 \rightleftharpoons ^-OOCNCH_2COO^- + H^+ \\ ^-OOCNCH_2COO^- + H_2O \rightleftharpoons H_2NH_2COO^- + HCO_3^- \\ CO_{2(aq)} + OH^- \rightleftharpoons HCO_3^- \rightleftharpoons CO_3^{2-} + H^+ \end{array}$

Task 4. Extractive carbon mineralization of Mn, Ca, and Mg recovery


- Extent of mineralization, solvent regeneration and effective solvent regeneration for mineralization of Ca(OH)₂ using CO₂ pre-loaded 2.5 M Na - Glycinate at 25 °C, 50 °C and 75 °C.
- Extent of carbon mineralization ~ 92% and solvent regeneration ~ 92% is realized using Ca(OH)₂
- Solvent regeneration ~ 94% is achieved on the mineralization of by-product obtained on slag dissolution

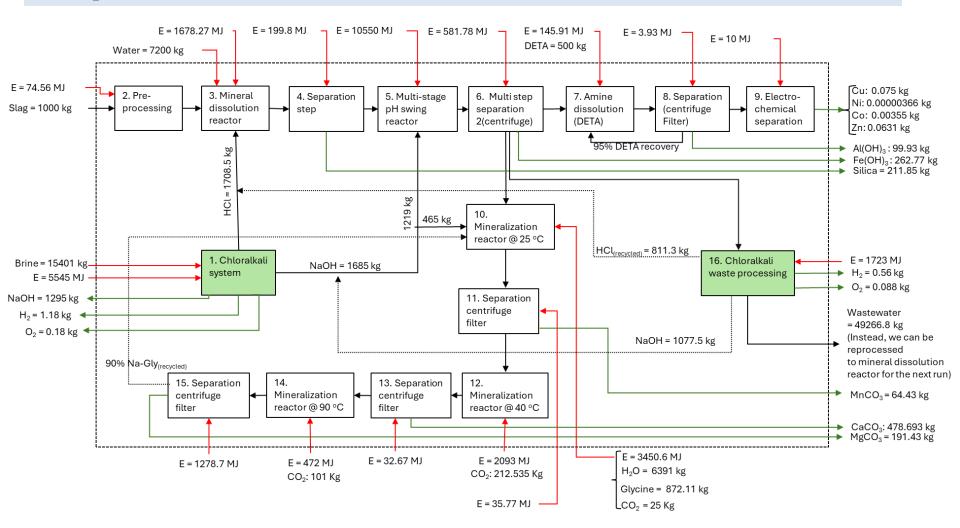
Milestone 6.1. Complete the TEA framework for INSPIRE


Key criteria	USD	#	Assumptions					
		1	The costs of crushing and grinding slag is \$10/ton which is					
			incorporated in ASPEN.					
Total Operating Cost	\$174,221.06	2	The tax credits for carbon capture are considered to be \$20/ton					
Total Raw Materials Cost	\$160,842.59		of CO ₂ captured. In ASPEN, this is reflected as -\$0.02 per					
	ψ 100,0 4 2.00		kilogram to incorporate it into raw material costs.					
Total Product Sales	\$555,884.26	3	The separation efficiency of the centrifuge filters in ASPEN					
Total Utilities Cost	\$158.16		model is set at 99%. The power required for processing 1					
			m ³ /hr. of feed rate in a centrifuge filter is 1 kW.					
Operating Profit per ton	\$220,662.44	4	Solvent recovery rates are set at 90% for CO ₂ capture solvent					
			(Sodium Glycinate) and 95% for metal-recovery solvent					
			(DETA). These rates are factored into the calculation of raw					
			material costs.					


K

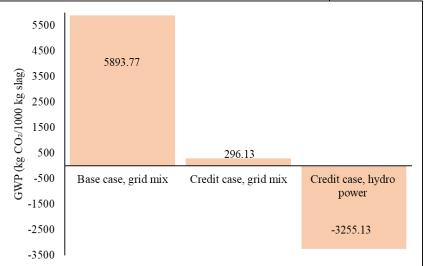
To To To O

Milestone 6.1. Complete the TEA framework for INSPIRE


- The annual slag processing volume amounts to 8,640 tons, based on plant operation for 360 days per year. Each ton of slag yields a profit of \$220,662.44, predominantly derived from the sale of carbonates and metal oxides. Additionally, revenue is generated from the recovery of critical metals.
- \Box About 338 tons of CO₂ captured per ton of slag.

Milestone 6.2. Complete the LCA framework for INSPIRE

LCA is based on processing 1 ton of slag coupled with the electrochemical co-generation of NaOH, HCl, H_2 , and O_2 for extracting energy critical metals and producing inorganic carbonates via CO_2 capture and mineralization.



1800 1300 800 GWP (kg CO₂/1000 kg slag) 300 Electricity H_2 Brine NaOH Cobalt Copper Nickel Zinc MgCO₃ H_2 O₂ O_2 Silica DETA CO_2 MnCO₃ CaCO₃ NaOH EAF slag Electricity Electricty Fe_2O_3 Electricity Ab_{03} Electricity Glycine for Na-Gly Electricity CO 3 çõ E -200 -700-12005 9 2 3 7 8 10 15 4 11 12 13 14 16 -1700

Milestone 6.2. Complete the LCA framework for INSPIRE

CO₂ emissions are predominantly from electricity, brine, and solvent. Negative emissions arise from co-product generation.

Switching to electricity from renewable energy resources and crediting the products can result in carbon – negative products.

Outreach Activities

C1. Engage **K** – 12 community in science education and communication

The REACT (Research Education and Activities for Community Teachers) program connects K-12 educators with cutting-edge research at Cornell University. Organized by graduate students, this initiative highlights the latest research techniques and advancements for teachers, aiming to bring cutting-edge research into their classrooms. Dhruv Mehta participated in the virtual lab tour, where he showcased various equipment and analytical instruments in the lab used for research on carbon capture and metal recovery.

Upcoming activities

We are organizing the ACS Women in Energy Symposium in the ACS Fall Meeting in Denver, Colorado from August 18 – 22, 2024.

We welcome you to attend!

Key Tasks and Subtasks

The team has made significant progress on Tasks 1 – 6 during the first year

	Task & Subtasks		Yea	ır 1			Yea	ar 2	
	Quarte	er 1	2	3	4	1	2	3	4
1	Project Management and Planning (including kick-off meeting)	1.1							
2	Material characterization, solvent synthesis and identify solvents								
	2.1 Characterize chemical and morphological features of alkaline materials	2.1							
	2.2 Synthesize third generation solvents and determine CO ₂ capture behavior		2.2						
	2.3 Determine the appropriate solvents based on thermodynamics and kinetics			2.3					
3	Metal recovery using CO ₂ -bearing solvents and electrochemical approaches				3.1S				
4	Extractive carbon mineralization for Mn, Ca, and Mg recovery				4.1				
5	Experimental setup for electromediated stripping, recovery, and solvent regeneration				5.1				
6	Develop frameworks for techno-economic assessments and life cycle analyses	5							
	6.1 Develop frameworks for process-scale analyses and TEA				6.1				
	6.2 Develop a framework to assess life cycle impacts				6.2				
C1	Engage K-12 students in science education and communication				C1.1				
7	Recover Al – and Fe – bearing solids					7.1			
8	Recover Mn-, Ca-, and Mg-bearing carbonates								
	8.1 Phase separation, compositional analyses, quantification of CO ₂ capture and mineralization						8.1		
	8.2 Produce Ca-carbonate via integrated CO ₂ capture and conversion							8	8.2
9	Electromediated critical metal stripping, recovery, and solvent regeneration							C	
	9.1 Selective Ni stripping by Cu^{2+} ion substitution						9.1		
	9.2 Selective Ni and Co stripping by Cu2+ substitution and metal recovery by							9.29	3
	carbon mineralization							9.49	
10	Conduct whole system TEA and LCA								
	10.1 Evaluate the overall techno-economic impacts								0.1
C2	10.2 Assess whole system life cycle impacts Expand internship opportunities for underrepresented students and women								0.2 C2.1
	Engage women, rural communities, and general public through symposia							(-4.1
C3	organization and presentations							(C 3.1

Milestones

Milestones 1.1, 2.1, 2.2, 6.1, and 6.2 are achieved. Significant progress is being made towards Milestones 2.3, 4.1, 5.1, 6.1, and 6.2. Green: completed | Blue: In Progress | Black: To Begin

	Туре	Milestones
1. Project Management	Y1, Q1	1.1. Develop the communication plan and other deliverables and organize the project kick-off meeting
2. Material characterization, solvent synthesis and identification for metal recovery	Y1, Q1	2.1. Quantify the chemical compositions and morphological features of the alkaline industrial residues from secondary aluminum processing and steel making
	Y1, Q2	2.2. Synthesize third generation solvents and quantify CO_2 capture behavior
	Y1, Q3	2.3. Identify 2-3 appropriate solvent systems
3. Metal recovery	Y1, Q4	3.1. Leach > 60% of Ni and > 80% of Ca from select alkaline industrial residues - SMART; Go – No Go Milestone
4. Extractive carbon mineralization of Mn, Ca, and Mg recovery	Y1, Q4	4.1. Achieve selective separation of Mn, Ca, and Mg-carbonates
5. Experimental setup for electromediated separation	Y1, Q3	5.1. Demonstrate a working experimental setup for separating metals of interest
6. Develop frameworks for TEA and LCA	Y1, Q4	6.1. Complete the TEA framework for INSPIRE
	Y1, Q4	6.2. Complete the LCA framework for INSPIRE
7. Recover Al- and Fe-bearing solids	Y2, Q1	7.1. Achieve the precipitation of AI- and Fe-rich solids from select alkaline industrial residues with yields > 60% - SMART
8. Recover Mn-, Ca-, and Mg-bearing carbonates	Y2, Q2	8.1. Recover > 90% of select solvents after Mn,Ca, and Mg- carbonate precipitation - SMART
	Y2, Q4	8.2. Produce > 10 kg of $CaCO_3$ based on optimal conditions - SMART
9: Electromediated metal recovery	Y2, Q3	9.1 Selective electrochemical recovery of Ni, Co, Zn-carbonates
	Y2, Q4	9.2. Develop solvent regeneration strategy
10: Conduct whole system TEA and LCA	Y2, Q4	10.1. Final TEA for the fully integrated INSPIRE technology
	Y2, Q4	10.2. Final LCA for the fully integrated INSPIRE technology

Thank you!