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Concrete construction is hostage to cement production’s 
embodied CO2 intensity: So what can be done now?
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emits nearly 10% of 

global CO2

0.9 tons of CO2 are emitted 
per ton of cement produced; 
4.5 billion tonnes of cement 

produced annually
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CO2 utilization (mineralization) implies producing CaCO3

is based on the use of Ca(OH)2
which can be produced thermally, and 

electrochemically (without CO2 emissions)
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Carbonation is insensitive to SOx and NOx
enables direct stack-tap of flue gases –
without a need for a CO2 capture step
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Mobile calcium is available in low-cost 
reactants, including coal combustion 

residues (CCRs) and steel slags
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Alternate cementation methods may 
unlock further advantages: fabrication 

methods (3DP), greater control 
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Why choose Ca(OH)2 as a mineralization reactant?

 Carbonation occurs rapidly 
at ambient temperature and 
pressure without carbon 
capture step, or gas clean-up 
(insensitive to SOx and NOx)

 Lower kiln temperature 
(800°C) than cement (1500°C) 
allows reduced energy and CO2
intensity of production

 Reaction is downhill: 
thermodynamically favorable 
and requires little, if any, 
extrinsic energy
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Selecting which product geometries to produce, and why?

Selected three concrete products for 
mineralization processing:

 Defined criteria: Exposed surface-to-volume ratio, estimated 
CO2 reduction (reduction in embodied carbon intensity: eCI), 
market size, cementitious materials cost

 The analysis was informed by data about processing 
conditions and product performance (e.g., strength)

 Based on combined scoring criteria, we selected: CMU, 
segmented retaining walls (SRW), and manholes (MAN)

CO2 uptake rate 
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Maximizing reactant 
consumption and 
mineralization Ca(OH)2

Ca2+
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CARBONATION

Carbonation potentials of 
reactants – portlandite (Ca(OH)2)
 Portlandite carbonation largely dependent on 

dissolution and precipitation of Ca(OH)2 and 
CaCO3, respectively

 T and [CO2] have minor affect on extent of 
reaction which allows ambient conditions

 Carbonation is near-complete within 24 h

 The Significance: Pressurization, CO2 
enrichment, or significant heating is not 
required for portlandite carbonation 0
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Microstructural 
influences on 
carbonation kinetics

Carbonation kinetics of 
CO2Concrete mixture compositions
 Kinetics of particulate carbonation depend on 

relative humidity, T and [CO2].

 Composite mixture formulation: Cement, portlandite 
and fly ash that were formed into geometries with 
suitable surface-to-volume (s/v, m-1) ratios 

 Carbonation data was collected across range of 
operating conditions to simulate flue gas conditions: 
T: 20-to-65°C, relative humidity (RH): 10-to-80%, and 
CO2 concentration: 3-to-15 vol.%

 Important to match the “testing” surface area to 
volume ratio (s/v) of concrete products/components. 
In general, the carbonation rates for each 
component are KS > 1E-05 s-1
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The influence of 
carbonation on 
strength gain?

Establishing processing-property relations

 Measured strength gain of carbonated materials as a 
function of the duration of steam curing cycle

 In general, a shorter steam curing duration enhances 
carbonation by reducing the surface coverage of 
reactant particles – which are otherwise passivated

 Carbonated concrete exceeds the strength 
requirement for relevant product selections while 
ensuring CO2 uptake
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AspenPlus© model of 
carbonation conditions, 
in reactor, over time

Development of carbonation/mass 
transfer model at the bench-scale
Two Aspen Plus© based models were developed:

1. Steady-state model that assesses 24-h average CO2
uptake based on reactor conditions (RH, [CO2], T)

2. Dynamic model to simulate the reactor and the 
process conditions in time over 24-h operating period

3. The dynamic model incorporates a carbonation 
regression model to determine how time-dependent 
conditions affect reactant conversion/CO2 uptake

4. As appropriate, the simulation data was used for 
developing stream tables for the design basis 
memorandum (DBM) 
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Developing predictive 
(DOE) model to ascertain 
CO2 uptake 

RH

[CO2]

T

Developed predictive mode for the carbonation 
of CO2Concrete components at the bench-scale

 This model is developed using a “Design-of-Experiments” 
approach that is used to assess the parametric 
dependence of T, RH and [CO2] on CO2 uptake

 The model estimates CO2 uptake across varying 
carbonation conditions for each product geometry across 
a range of temperatures, RH and CO2 concentration

 The regression model makes use of Aspen Plus© 
simulation data to assess how process variables and 
conditions affect mineralization across diverse 
conditions

X (conversion) = 𝒙 + 𝒂 𝑪𝑶𝟐 − 𝒃𝑹𝑯+ 𝒄𝑻
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Identify modifications required to the existing 
CO2 mineralization system or design and 
fabricate new system for selected precast 
concrete components

 Subtask A – CFD model development

 Subtask B – System design 
modifications/fabrication

 Subtask C – HAZOP

Design modifications to existing mineralization system
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GAS FLOW DISTRIBUTION 
OPTIMIZATION

TRANSIENT HEAT AND MASS TRANSFER ANALYSIS

CFD Model Development
 Computational fluid dynamics (CFD) used to 

optimize gas flow and internal reactor geometry 
for concrete elements

 CFD helped guide the required concrete 
component flowrate coverage to meet 
conditions indicated by the process model

 System gas control skid was modified and a 
redesign of the carbonation reactor was 
completed based on the CFD simulation results

 An updated design basis memorandum (DBM) 
was submitted for fabrication 

Design modifications to existing mineralization system
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System fabrication, installation and commissioning

National Carbon Capture Center (NCCC), AL, 2024

 The system was fabricated, and post-FAT (for 
functionality, and quality) was shipped to the NCCC 
for installation

 At the NCCC, internal reactor instrumentation was 
installed and tested including:

– RH-T sensors
– Flow and pressure sensors
– CO2 concentration sensors
– Electric power meters
– Water flow meters

 System functionality and heating rate of the reactor 
were evaluated following commissioning

 Following system commissioning, multiple test 
runs were carried out to produce concrete products 
with support of local precast/masonry producers
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 Concrete was semi-cured at concrete facilities (Blair Block and Alcrete)

 This method of offsite production required substantial “green strength” for 
the products to be transported which resulted in more cement use 

 The formed products were shipped to NCCC and loaded into carbonation 
reactor for 18-to-24 hours of processing

 Once completed, the concrete was unloaded and stored for ASTM testing 
(carried out by 3rd-party testing entity) 

 Total mass produced: CMU: 31 tonnes, SRW 51 tonnes, Manholes: 40 
tonnes; with a production rate of >10 tonnes of production per day

Concrete product manufacturing, and performance validation of 
carbonated products

[1] Off-site production at Concrete plant [3] On-site CO2 mineralization process at NCCC

CO2 utilization

1.1.
Batching, and 

forming 
products

1.2.
Semi-curing at 
concrete plant

[2]
Transporting 
products to 

NCCC

3.1
Loading 

concrete into 
reactor

3.2
Carbonation 

curing (18-24h)

3.3 
Vent system 

and unloading 
concrete

3.4 
Storing 

concrete at site

[4]
Testing and 

evaluation of 
concrete
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Performance validation, and product compliance (with existing 
ASTM standards) with emphasis on strength properties

 Each concrete product passed ASTM 
strength requirements. And, each 
test run exceeded target 0.2 gCO2/g 
reactant

 Despite variation in CO2 uptake –
minimal variations in strength 
observed in concrete samples

 Carried out standardized testing for 
each product based on existing 
standards (e.g., by NCMA’s testing 
laboratories)
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Technoeconomic analysis, lifecycle assessment, and overall 
commercialization strategy 

 Key success of demonstration was to 
produce a concrete product with 
reduced embodied carbon intensity (ECI)

 Net CO2 reduction via replacement of 
raw materials and CO2 uptake

 Lifecycle analysis identified net CO2
reduction across all products:

– CMU: 30.1%
– SRW: 31.3%
– MH: 19.8%

 These values are below project target of 
45% but this is a function of the green 
strength requirement for transport

BLOCK MAKING ≈ STANDARD BLOCKS

CARBONATION PROCESS > STANDARD BLOCKS

CO2 UPTAKE >> STANDARD BLOCKS

TRANSPORTATION≈ STANDARD BLOCKS

RAW MATERIALS << STANDARD BLOCKS

NET CO2 EMISSIONS << STANDARD BLOCKS
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 Limitations of performing demonstration at 
host-site influenced final eCI reductions:

– Cement mass fraction – minimum 
required to achieve transport strength

– Hydrated lime eCI – future scenarios 
could obtain from renewable sources

– Site energy supply – limited to local 
eGrid values. Plan to retrofit sites with 
biomass generators -> CO2 supply and 
energy

 Sensitivity analysis was conducted for each 
product to assess these key areas 
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Technoeconomic analysis, lifecycle assessment, and overall 
commercialization strategy 
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Technoeconomic analysis, and lifecycle assessment: What we’ve 
accomplished, and what more can be done?

 Demonstrated an approach to reduce eCI of precast and 
concrete masonry units by up to 30% by: reducing 
cement use, and enabling CO2 mineralization

 The reduction was lower than targeted due to the need to 
use more cement to ensure “green-strength” during 
transport prior to carbonation

 There are three clear pathways to reduce eCI further: 
Reduce cement use, use low(er) eCI lime and lime 
containing residues, use green(er) electricity

 With these reductions, for typical onsite production, eCI 
reductions of up to 70% can be realized quickly

 CarbonBuilt is delivering on this approach as is in 
commercial operations today (in Alabama, with other 
projects in the pipeline).
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 CO2 mineralization is a simple, straightforward, and ready to deploy 
pathway for CO2 utilization and low-carbon concrete production

 CO2 mineralization in concrete can be achieved using dilute CO2

streams, and without a carbon capture step – unlike other pathways

 The large size of the concrete market is an opportunity, but requires 
spatially delocalized access to (dilute) CO2 for mineralization

 The UCLA team has demonstrated the feasibility of this technology 
at pilot-scale and exceeded project milestones

 This project has advanced the technology from TRL 3+ to TRL 6+

 This technology is already being commercialized by CarbonBuilt at 
concrete masonry plants across the United States

 CO2 mineralization is a simple, straightforward, and ready to deploy 
pathway for CO2 utilization and low-carbon concrete production

 CO2 mineralization in concrete can be achieved using dilute CO2

streams, and without a carbon capture step – unlike other pathways

 The large size of the concrete market is an opportunity, but requires 
spatially delocalized access to (dilute) CO2 for mineralization

 The UCLA team has demonstrated the feasibility of this technology 
at pilot-scale and exceeded project milestones

 This project has advanced the technology from TRL 3+ to TRL 6+

 This technology is already being commercialized by CarbonBuilt at 
concrete masonry plants across the United States

Summary and 
Conclusions


