Achieving Unprecedented CO₂ Utilization in CO₂Concrete[™]: System Design, Product Development and Process Demonstration

Project Number: DE-FE0031915 Project Manager: Isaac "Andy" Aurelio, and Kanchan Mondal

Prepared by: Gaurav N. Sant, Ph.D. Institute for Carbon Management Prepared for: 2024 FECM/NETL Carbon Management Research Project Review Meeting, August 5-9, 2024, Pittsburgh, Pennsylvania.

UCLA Samueli School of Engineering ... Institute for Carbon Managemer

Concrete construction is hostage to cement production's embodied CO_2 intensity: So what can be done now?

Cement production emits nearly 10% of global CO₂

0.9 tons of CO₂ are emitted per ton of cement produced; 4.5 billion tonnes of cement produced annually

Global concrete market ~ \$1 trillion / year

Ready mixed concrete has the largest market share

Precast and masonry production allow for controlled conditions, and for better quality control

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 2 of 19

Institute for **Carbon Management**

CO₂ utilization (mineralization) implies producing CaCO₃

is based on the use of $Ca(OH)_2$ which can be produced thermally, and electrochemically (without CO_2 emissions)

Carbonation is insensitive to SO_x and NO_x enables direct stack-tap of flue gases – without a need for a CO_2 capture step

Mineralization is the only "thermodynamically downhill" route for CO₂ utilization

Concrete construction provides a gigaton scale sink for CO₂ emissions annually

Mobile calcium is available in low-cost reactants, including coal combustion residues (CCRs) and steel slags

Alternate cementation methods may unlock further advantages: fabrication methods (3DP), greater control

Why choose Ca(OH)₂ as a mineralization reactant?

- Carbonation occurs rapidly at ambient temperature and pressure without carbon capture step, or gas clean-up (insensitive to SO_{\star} and NO_{\star})
- Lower kiln temperature (800°C) than cement (1500°C) allows reduced energy and CO_2 intensity of production
- Reaction is downhill: thermodynamically favorable and requires little, if any, extrinsic energy

Selecting which product geometries to produce, and why?

Selected three concrete products for mineralization processing:

- Defined criteria: Exposed surface-to-volume ratio, estimated CO₂ reduction (reduction in embodied carbon intensity: eCI), market size, cementitious materials cost
- The analysis was informed by data about processing conditions and product performance (e.g., strength)
- Based on combined scoring criteria, we selected: CMU, segmented retaining walls (SRW), and manholes (MAN)

Unit type	Representative S/V (mm ⁻¹)	CO₂ uptake rate gCO _{2/} gCa(OH)2 (K _s - s ⁻¹)
СМИ	0.08	9.54E-04
SRW	0.05	6.16E-04

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 5 of 19

Maximizing reactant consumption and mineralization

Carbonation potentials of reactants – portlandite (Ca(OH)₂)

- Portlandite carbonation largely dependent on dissolution and precipitation of Ca(OH)₂ and CaCO₃, respectively
- T and [CO₂] have minor affect on extent of reaction which allows ambient conditions
- Carbonation is near-complete within 24 h
- The Significance: Pressurization, CO₂ enrichment, or significant heating is not required for portlandite carbonation

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 6 of 19

Microstructural influences on carbonation kinetics

Carbonation kinetics of CO₂Concrete mixture compositions

- Kinetics of particulate carbonation depend on relative humidity, T and [CO₂].
- Composite mixture formulation: Cement, portlandite and fly ash that were formed into geometries with suitable surface-to-volume (s/v, m⁻¹) ratios
- Carbonation data was collected across range of operating conditions to simulate flue gas conditions: T: 20-to-65°C, relative humidity (RH): 10-to-80%, and CO₂ concentration: 3-to-15 vol.%
- Important to match the "testing" surface area to volume ratio (s/v) of concrete products/components. In general, the carbonation rates for each component are K_s > 1E-05 s⁻¹

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 7 of 19

The influence of carbonation on strength gain?

Establishing processing-property relations

- Measured strength gain of carbonated materials as a function of the duration of steam curing cycle
- In general, a shorter steam curing duration enhances carbonation by reducing the surface coverage of reactant particles – which are otherwise passivated
- Carbonated concrete exceeds the strength requirement for relevant product selections while ensuring CO₂ uptake

AspenPlus© model of carbonation conditions, in reactor, over time

Development of carbonation/mass transfer model at the bench-scale

Two Aspen Plus[©] based models were developed:

- 1. Steady-state model that assesses 24-h average CO₂ uptake based on reactor conditions (RH, [CO₂], T)
- 2. Dynamic model to simulate the reactor and the process conditions in time over 24-h operating period
- 3. The dynamic model incorporates a carbonation regression model to determine how time-dependent conditions affect reactant conversion/ CO_2 uptake
- 4. As appropriate, the simulation data was used for developing stream tables for the design basis memorandum (DBM)

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 9 of 19

Developing predictive (DOE) model to ascertain CO₂ uptake

Developed predictive mode for the carbonation of CO₂Concrete[™] components at the bench-scale

- This model is developed using a "Design-of-Experiments" approach that is used to assess the parametric dependence of T, RH and [CO₂] on CO₂ uptake
- The model estimates CO₂ uptake across varying carbonation conditions for each product geometry across a range of temperatures, RH and CO₂ concentration
- The regression model makes use of Aspen Plus© simulation data to assess how process variables and conditions affect mineralization across diverse conditions

X (conversion) =
$$x + a[CO_2] - bRH + cT$$

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 10 of 19

Design modifications to existing mineralization system

OBJECTIVES

Identify modifications required to the existing CO₂ mineralization system or design and fabricate new system for selected precast concrete components

- Subtask A CFD model development
- Subtask B System design modifications/fabrication
- Subtask C HAZOP

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 11 of 19

Design modifications to existing mineralization system

SUBTASK 6.1 CFD Model Development

- Computational fluid dynamics (CFD) used to optimize gas flow and internal reactor geometry for concrete elements
- CFD helped guide the required concrete component flowrate coverage to meet conditions indicated by the process model
- System gas control skid was modified and a redesign of the carbonation reactor was completed based on the CFD simulation results
- An updated design basis memorandum (DBM) was submitted for fabrication

TRANSIENT HEAT AND MASS TRANSFER ANALYSIS

GAS FLOW DISTRIBUTION OPTIMIZATION

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 12 of 19

System fabrication, installation and commissioning

- The system was fabricated, and post-FAT (for functionality, and quality) was shipped to the NCCC for installation
- At the NCCC, internal reactor instrumentation was installed and tested including:
 - RH-T sensors
 - Flow and pressure sensors
 - CO2 concentration sensors
 - Electric power meters
 - Water flow meters
- System functionality and heating rate of the reactor were evaluated following commissioning
- Following system commissioning, multiple test runs were carried out to produce concrete products with support of local precast/masonry producers

National Carbon Capture Center (NCCC), AL, 2024

Concrete product manufacturing, and performance validation of carbonated products

- Concrete was semi-cured at concrete facilities (Blair Block and Alcrete)
- This method of offsite production required substantial "green strength" for the products to be transported which resulted in more cement use
- The formed products were shipped to NCCC and loaded into carbonation reactor for 18-to-24 hours of processing
- Once completed, the concrete was unloaded and stored for ASTM testing (carried out by 3rd-party testing entity)
- Total mass produced: CMU: 31 tonnes, SRW 51 tonnes, Manholes: 40 tonnes; with a production rate of >10 tonnes of production per day

School of Engineering

Carbon Management

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 14 of 19

Performance validation, and product compliance (with existing ASTM standards) with emphasis on strength properties

- Carried out standardized testing for each product based on existing standards (e.g., by NCMA's testing laboratories)
- Each concrete product passed ASTM strength requirements. And, each test run exceeded target 0.2 gCO₂/g reactant
- Despite variation in CO₂ uptake minimal variations in strength observed in concrete samples

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 15 of 19

Technoeconomic analysis, lifecycle assessment, and overall commercialization strategy

- Key success of demonstration was to produce a concrete product with reduced embodied carbon intensity (ECI)
- Net CO₂ reduction via replacement of raw materials and CO₂ uptake
- Lifecycle analysis identified net CO₂ reduction across all products:
 - CMU: 30.1%
 - SRW: 31.3%
 - MH: 19.8%
- These values are below project target of 45% but this is a function of the green strength requirement for transport

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 16 of 19

Institute for Carbon Management

Technoeconomic analysis, lifecycle assessment, and overall commercialization strategy

CMU

SRW

- Limitations of performing demonstration at host-site influenced final eCI reductions:
 - **Cement mass fraction** minimum required to achieve transport strength
 - Hydrated lime eCI future scenarios could obtain from renewable sources
 - Site energy supply limited to local eGrid values. Plan to retrofit sites with biomass generators -> CO₂ supply and energy
- Sensitivity analysis was conducted for each product to assess these key areas

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 17 of 19

Institute for Carbon Management

Technoeconomic analysis, and lifecycle assessment: What we've accomplished, and what more can be done?

- Demonstrated an approach to reduce eCI of precast and concrete masonry units by up to 30% by: reducing cement use, and enabling CO₂ mineralization
- The reduction was lower than targeted due to the need to use more cement to ensure "green-strength" during transport prior to carbonation
- There are three clear pathways to reduce eCl further: Reduce cement use, use low(er) eCl lime and lime containing residues, use green(er) electricity
- With these reductions, for typical onsite production, eCI reductions of up to 70% can be realized quickly
- CarbonBuilt is delivering on this approach as is in commercial operations today (in Alabama, with other projects in the pipeline).

CO2 Uptake 💶 (A1) Raw Materials 💶 (A2) Transport 💶 (A3) Process —— Net Emissions

2024 DOE-NETL Review Meeting, Pittsburgh, PA | Slide 18 of 19

- CO₂ mineralization is a simple, straightforward, and ready to deploy pathway for CO₂ utilization and low-carbon concrete production
- CO₂ mineralization in concrete can be achieved using dilute CO₂ streams, and without a carbon capture step – unlike other pathways
- The large size of the concrete market is an opportunity, but requires spatially delocalized access to (dilute) CO₂ for mineralization
- The UCLA team has demonstrated the feasibility of this technology at pilot-scale and exceeded project milestones
- This project has advanced the technology from TRL 3+ to TRL 6⁺
- This technology is already being commercialized by CarbonBuilt at concrete masonry plants across the United States

