Efficient CO₂ Use for Robust Marine Microalgae Biomass Yields (MASS)

DE-EE0010292

Matthew Posewitz

Colorado School of Mines

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

ENERGY.GOV

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Overview: Efficient CO₂ Use for Robust Marine Microalgae Biomass Yields (MASS)

Technology Summary

- Combine high-productivity (high carbon uptake) alga with advanced diffuser/pond designs that are based on seminal designs first successfully implemented for efficient CO₂ utilization at the Roswell NM ponds. Use this combination to achieve 70% CUE and 20 gAFDW m⁻² d⁻¹ productivities.
- Use membrane filtration/pH-based cell flocculation for media clarification and medium recycle (residual carbon capture).
- Use cell mutagenesis and strain selection/screening to isolate strains with improved growth at elevated pH (~8.0) and for strains with higher lipid levels.

Key Personnel

Matthew Posewitz (Mines), Joseph Weissman, Arthur Grossman (Carnegie Institution for Science), Jason Quinn (Colorado State University), Braden Crowe (MicroBio Engineering), Michael Guarnieri (NREL)

Program Summary

Period of performance: 36 months

Federal funds: \$3,000,000 Cost-share:\$750,000 Total budget:\$3,750,000

Technology Impact

- Provide industrially-relevant *Picochlorum* strains and pH cycling pond operations that achieve DOE BETO targets of at least 70% CUE and 20 gAFDW m⁻² d⁻¹ productivities in two summer campaigns. Publish advances for the algal biotechnology community.
- Develop *Picochlorum* strains with increased carbon use at pH 7.8 to 8.0; and with higher lipid content for conversion to SAF.

High CUE/productivity using efficient CO₂ injection coupled with rapid carbon fixation

Overview: Efficient CO₂ Use for Robust Marine Microalgae Biomass Yields (MASS) DE-EE0010292

Project Dates

- BP1: 7/1/2023-9/30/2023
- BP2: 10/1/2023-3/31/2025
- BP3: 4/1/2025-9/30/2026

Key Personnel

36 months

Matthew Posewitz (Mines), Joseph Weissman, Arthur Grossman (Carnegie Institution for Science), Jason Quinn (Colorado State University), Braden Crowe (MicroBio Engineering), Michael Guarnieri (NREL)

Program Summary Period of performance:

Federal funds: \$3,000,000 Cost-share:\$750,000 Total budget:\$3,750,000

Technology Summary: We propose to combine highproductivity (high carbon uptake) algae with advanced CO_2 transfer systems and pond operations based on innovations beyond the seminal designs for efficient CO_2 utilization, first demonstrated by the DOE- Aquatic Species Program at the Roswell, NM project. These efforts, combined with medium recycle and innovative strain improvements, will enable exceeding the FOA targets of 70% CUE (Carbon Use Efficiency) at 20 gAFDW m⁻² d⁻¹ productivity. CO_2 will be provided by DAC.

Description of the Technology's Impact: Develop and demonstrate in bioreactors and ponds (40 m²) strains of *Picochlorum* with increased carbon use at optimized pH cycling regimes and with higher lipid yields. Target SAFs (sustainable aviation fuels) as biofuel products, with high value nutritional co-products.

Technology Background

Technological Advantages

- Fast growing marine alga
- Extensive outdoor pond growth experience
- Sump and CO₂ delivery expertise
- Extensive strain development capabilities

Asadollahzadeh, et al., (2014) *Korean Journal of Chemical Engineering* **31**, 1425-1432. Weissman, et al., (1988) *Biotechnology and Bioengineering* **31**, 336-344. Weissman, et al., (1989) SERI/STR-232-3569 SERI report.

Thrive in high light, high salt, high temperature

Technology Background Back to nature for new strains

Isolation

Selection

Field

Joseph Weissman

No. Weight

Evaluation

- Enriched under high light (1000 μmol PAR m⁻²s⁻¹ in seawater medium)
- Enriched Picochlorum celeri
- Doubling time 2h

Technology Background *Picochlorum celeri*: high-light tolerant – rapid growth

<i>P. celeri</i> Isolation Vessel, Name	olation Vessel, ame μ, h ⁻¹ SD (n)		т, h	24 ·(τ⁻¹)
E1	0.28	0.012 (5)	2.5	9.7
FACS Sorted, TG1	0.22	0.014 (9)	3.2	7.5
FACS Sorted, TG1 axenic	0.21	0.005 (3)	3.4	7.1
#2	0.29	0.013 (6)	2.4	10.0
#3, TG2	0.33	0.009 (14)	2.1	11.5
#3 replicate, TG2	0.33	0.003 (6)	2.1	11.5
#3, TG2 axenic	0.34	0.026 (3)	2.0	12.0
#6	0.30	0.010 (8)	2.3	10.4

Weissman et. al., Algal Research (2018) 36, 17-28

Technology Background *Picochlorum celeri*: high-light tolerant – rapid growth

Weissman et. al., Algal Research (2018) 36, 17-28

Technology Background exemplary outdoor biomass yields in seawater

Krishnan et al. *Scientific Reports* (2021) **11**, 11649 -John McGowen AzCATI

Technical Approach/Project Scope Key Milestones

- Characterization of changes in C_i as a function of pH to determine CO₂ utilization [Q2]
- Optimize urea content in high-biomass media to minimize C loss [Q3]
- Experimentally characterize CO₂ injection efficiencies and outgassing to minimize C_i loss [Q4/Q5/Q6]
- Determine biomass productivities using CO₂ delivery on demand for increasing pH and selecting for higher CUE strains [Q7/Q8/Q9]
- Isolate high lipid *P. celeri* cells [Q10/Q11]
- Develop Custom Membrane Harvesting Unit and Quantify flocculation using high pH [Q4/Q7]
- Outdoor growth campaigns of *P. celeri* cells to determine productivities and CUEs [Q12/13]
- Techno-Economic and Life-Cycle Analyses [Q13]
- Diversity, equity and inclusion

Technical Approach/Project Scope project success criteria and risks

Project Goals:

- Demonstrate the ability to achieve 20 g m⁻² d⁻¹ in *P*. *celeri* biomass productivity at 70% CUE in two 30-day summer campaigns outdoors.
- Improve carbon use efficiencies under highproductivity growth.

Project risks/mitigation strategies:

- Decreased carbon severely attenuates productivity/strain improvements, pond operation, new cultivars.
- High oxygen reduces biomass productivities/use selective pressures to attain higher O₂-tolerant strains.
- Harvesting and media recycling are inefficient/distinct harvesting mechanisms being investigated.

Progress and Current Status *testing MBE-site water*

Media: Well water ~ pH 8.0, 0.5ml HCl was used to neutralize Media composition: 100N:10P:3Fe (Proline) Media was not filtered Light script: Mesa Arizona day Temperature: 33°C constant Harvest time: 7 pm (dark) Areal Productivity 39.4 (0.8)

 $(g m^{-2} d^{-1})$

12

Progress and Current Status Picochlorum celeri *growth at variable temperatures*

Temp	33°C constant	Vinyl off (August)	Vinyl off (August)	Vinyl on (September)
Diluti on	60%	35%	45%	55%
Produ citivty	$40.1 \pm 2.4 \text{ g/m}^2/\text{d}$	20.4 ± 1.1 g/m2/d	30.4 ± 0.5 g/m2/d	$37.9 \pm 0.3 \text{ g/m}^2/\text{d}$

Progress and Current Status Picochlorum celeri flocculation

Overnight incubation

Picochlorum celeri productivities at distinct urea levels

15

Picochlorum celeri productivities at distinct urea levels

16

Picochlorum celeri productivities at distinct urea levels

	203 ppm N	203 ppm N 60 ppm N			
AFDW (g L ⁻¹)	1.04 (0.03)	0.98 (0.03)	0.89 (0.01)**		
Chlorophyll (mg L ⁻¹)	48.0 (1.5)	31.6 (1.4)***	18.7 (1.1)***		
Chl a/b	4.6 (0.2)	5.1 (0.4)	4.3 (0.3)		
Carbohydrate content (mg L ⁻¹)	122.7 (1.9)	308.3 (10.5)***	475.7 (39.7)**		
aCarbohydrate fraction (%)	11.7 (0.5)	31.9 (1.8)***	53.8 (4.3)***		

Starch rich cells with thylakoid membranes

Each data point is average and standard error for 4 biological replicates. * indicates statistical significance

- Increases carbohydrate productivity by simply adjusting media composition
- Model system to understand carbon remodeling in *P. celeri*

low carbohydrate strains

Progress and Current Status *mutant libraries*

Kill curves following exposure of the *P. celeri* cells to different levels of UV-C. Top left: Survival of TG2 cells following exposure to different UV-C energy levels. Bottom left: Survival of *pgm* cells following exposure to different UV-C energy levels. Top right and bottom right: Plots showing the percent survival of the cells after exposure to the different radiation energies. For the mutagenesis experiments, the cells were grown at 160 µmol photons m⁻²s⁻¹ at 34 °C, with a constant supply of 2% CO₂.

MBE pond growth

Stable "farm" production for six weeks at ~27 g/m²/d

MBE pond growth

Stable "farm" production for six weeks at ~27 g/m²/d

Modest productivity reductions as pH/O₂ change ²¹

MBE pond growth

High O₂ burden with only modest reduction in productivity

Lessons Learned

- Picochlorum celeri exhibiting robust stable growth.
- Oxygen sensitivity and CO₂ delivery require further investigation to improve CUE.
- Mutant libraries prepared.
- Urea level will contribute to CUE.
- Carbohydrate mutants are in hand.
- Preliminary pond studies are promising for attaining end of project goals.

23

Plans for future testing/development/ commercialization

- a. In this project scale-up will be demonstrated at MBE.
- b. After this project larger scales will ultimately be proposed at appropriate testbeds.
- c. Ultimately, marine sites in the Gulf of Mexico are envisioned near CO_2 sources.

Plans for future testing/development/ commercialization

Gulf of Mexico "Deadzone" ~6500 Square Miles in 2021

NOAA

Summary Slide

- a. The green alga *Picochlorum celeri* is a rapidly (>25 g/m²/d) growing photoautotroph that effectively competes with CO_2 off-gassing.
- b. Farm preparations are underway for scaled testing.
- c. Strain improvement screening underway.
- d. Preliminary growth campaigns are promising for realizing end of product goals.
- e. Hosted DEI SWEET high-school workshop in collaboration with NREL. 15 teachers (1,000+ students).

Organization Chart

- Colorado School of Mines is responsible for using bioreactor experiments to quantify cellular productivities under conditions designed to enable more efficient pond operations.
- Carnegie Institute for Science is responsible for generating *P*. *celeri* mutants and screen for high lipid and high pH strains.
- MicroBio Engineering is responsible for outdoor growth campaigns, cell harvesting and final CUE calculations.
- NREL is responsible for strain development for harvesting and high lipid.
- Colorado State University is responsible for using TEA/LCA to inform process improvement.

Gantt Chart

Task; Subtask; Milestone; Go/No-Go			Project Quarter (Q)									
Task 1: Project Verification	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2
Subtask 1.1: Complete DOE verification												
Milestone 1.1.1: Complete DOE verification												
Go/No-Go #1: Successfully pass verification												
Subtask 1.2: Project Management												
Task 2: Characterize C _i as a function of pH												
Subtask 2.1: Measure C _i and pH at constant %CO ₂ in gas phase												
Milestone 2.1.1: Determine C _i in high biomass density medium												
Task 3: Optimize urea to minimize C loss												
Subtask 3.1: Optimize urea content in high biomass density medium												
SMART Milestone 3.1.1: Quantify optimal urea levels												
Task 4: Characterize CO ₂ injection efficiencies and outgassing												
Subtask 4.1: Adjust mixing speeds to probe CO ₂ outgassing												
Milestone 4.4.1 : Determine mixing speeds for K_L of 0.5 and 0.1 h^{-1}												
Milestone 4.1.2: Minimize nighttime C loss from respiration												
Milestone 4.1.3: Determine CO ₂ injection efficiencies in 40 m ² ponds												
Task 5: Establish on demand pH productivities/improved CUE strains												
Subtask 5.1: Determine pH regimes to attain 20 g m ⁻² d ⁻¹												
SMART Milestone 5.1.1: Attain >20 g m ⁻² d ⁻¹ cycling pH 7.0-7.8												
Go/No-Go #2: Attain >20 g m ⁻² d ⁻¹ cycling pH 7.0-7.8 in bioreactors												
Milestone 5.1.2: Determine 3.4 m ² pond productivities - cycling pH												
Subtask 5.2: Generate P. celeri random mutant library												
Milestone 5.2.1: Generate random mutant libraries												
Milestone 5.2.2: Select strains for improved high pH growth												
Task 6: Isolate high lipid <i>P. celeri</i> strains												
Subtask 6.1: Isolate high lipid P. celeri strains from mutant library												
Milestone 6.1.1: Select random mutants with increased lipid												
Milestone 6.1.2: Use gene editing to knockout starch synthesis												
Task 7: Develop Membrane harvesting unit - flocculation												
Subtask 7.1: Design/test membrane harvesting unit												
Milestone 7.1.1: Demonstrate ability to harvest 8,000 L d ⁻¹ at MBE												
Subtask 7.2: Quantify flocculation at high pH												
Milestone 7.2.1: Quantify flocculation and clarification at high pH												
Task 8: Outdoor Picochlorum growth campaigns												
Subtask 8.1: Determine CUE/productivities in 30-day campaigns												
Milestone 8.1.1: Membrane capture with 90% media recycle												
SMART Milestone 8.1.2: Run two 30-day outdoor campaigns												
Task 9: TEA/LCA												
Subtask 9.1: LCA/TEA												
Milestone 9.1.1: Develop TEA/LCA for integrated process												