ALBUS: Algae-Based Bioproducts Utilizing Sorbent-Captured CO₂

2654-1546

Maira R Ceron Hernandez Lawrence Livermore National Laboratory

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

LLNL-PRES-867839 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Project Overview

Objective: ALBUS are developing an integrated modular system that can continuously capture CO_2 from natural gas-fired units and deliver it to 1000 L algae growth ponds over a 30-day period.

FE0032190 \$2M DOE and \$500k Cost Share

Project Performance Dates: 08/01/2023 – 07/31/2025

Program Manager: Michael Stanton

Sorbent-polymer composites developed at LLNL with CC rates one order-of magnitude faster compared to liquid counterpart

 $M_2CO_3 + H_2O + CO_2 \leftrightarrow 2MHCO_3$

- Particulate sizes sieved as small as possible for best performing ink
- Increase surface area using 400 µm nozzle

20 nozzles 400 µm

LLNL demonstrated scalability up to 10s of Kg. ALBUS will scale up to 100s of kg.

Lawrence Livermore National Laboratory

Previous FWP-FECM

LLNL and SNL Cultivated at Bench and Lab Scale M. Gaditana with Composite Sorbent

Previous FWP-FECM

CO₂-loaded materials can be used for Algae cultivation

Advantages CO₂ Loaded Materials

- ✓ Selective CO_2 capture from point source
- ✓ Easy transport to algae farm
- $\checkmark\,$ No need of desorber and compressor
- ✓ Mass transfer enhancement
- ✓ Improve pH control

Challenges CO₂ Sparging

- Absorption, desorption column and compressor
- Co-location of algae ponds near the carbon source
- Low CO₂ solubility in water, requires high injection flow
- Loss of CO₂ from surface of pond
- Poor pH control

Sorbent-polymer composite can reduce CO₂ capture, storage and delivery cost

ALBUS: Integrated modular system using sorbent-polymer composite to cultivate algae

Advantages

- ✓ Modular system
- ✓ Affordable materials
- ✓ Eliminates co-location of algae ponds
- Inorganic carbon transport, storage, and delivery tuned to algal productivity levels

Challenges

- Lower stability with fresh water algae cultures
- Water uptake from algae ponds
- Carbonate lost with high hydration levels

ALBUS Key Milestones

 Determine algae growth using sorbent-supplied CO₂ and compare to algal growth from air and CO₂
 Demonstrate composite sorbent reusability. 30 days of absorption/desorption 3.2 cycles >70% loading.
 Design and build CO₂ absorption column and desorption spool-automated system.
 ~60 kg of Sorbent material produced for pilot-scale.
• Formulate dried algal meal.
• TEA-LCA Model Integration.

Subtask 3.1: CO₂ absorption of sorbent under different conditions

Two pressure decay systems

Bench scale absorption column

- Increasing surface area by changing strand diameter
- CO₂ absorption capacity vs hydration and loading temperature

Subtask 3.2: Sorbent stability over 16 cycles without algae

High hydration percentages promotes carbonate leaching, therefore *drying step in between cycles would be necessary*

*Average of 12 samples 5 -4 Mass Loss (wt%) 3 -2 · 0 15 5 8 9 10 11 12 13 14 16 6 *Cycle Carbonate mass loss significantly decreases after

cycle 5

30% Hydration/heat regeneration cycles

Subtask 3.3 and 3.4: Scale up composite sorbent production

LLNL Automated Extruder

20 nozzles 400 µm

8 in diameter

SWT Mixing/Extrusion

Composite roll

Subtask 2.1: Algal biocompatibility with Sorbent

All algal strains had higher cell count in the presence of composite sorbent compared with CO₂ sparging

Subtask 2.1: Algal biocompatibility with composite sorbent

Cycle 2 and 3 CO₂ loading after CO₂ desorption in algal cultures

Composite sorbent is more compatible with algal cultures grown in brackish water or higher salinity concentrations

Subtask 2.1: 4 L Picochlorum celery scale up with composite sorbent

- 4 days, sampling twice a day for growth, pH, and total inorganic carbon
- One composite in the morning and one in the afternoon of ~2.7 g each per day

Subtask 2.1: 4 L Picochlorum celery scale up with composite sorbent

Aliquots of algal culture taken 3 times daily

(1) Every morning after 12 hours without light. (2) After removal of first composite. (3) After removal of second composite

Algal cultures with composite and 5% CO_2 bubbling grew at similar rates, while negative control slower. The composite maintained the pH of the algae culture ~7.78, while negative control pH ~8.1

Subtask 2.1: 4 L Picochlorum celery scale up with composite sorbent

Regeneration: 4h in algae cultures

CO₂ uptake increases with cell growth, indicating successful CO₂ delivery from the composite and CO₂ consumption by the algae

Subtask 2.2: Grow Algal strain with simulated flue gas and high salt concentrations

<u>Subtask 2.2</u>: Chlorella Sorokiniana with simulated flue gas and high salt concentrations

Similar cell growth when CO₂ all day purging

Varying concentration of sea water

The 100% Salt is the same as ocean water

C. Sorokiniana similar cell growth rate up to 50% salt concentration.

Summary

- Proved cycling stability of sorbent over 16 without algae, 5 cycles with algae
- Scaled up composite sorbent to 10s of kilograms
- Scaled up algal cultures from 100 mL to 20L and tested ability of the composite sorbent to deliver CO₂ and control pH
- Successfully grow C. Sorokiniana with concentration up to 50% salt
- LLNL and SNL hosted two summer students, one from minority serving institution program (MSIIP) and from community collage intern program (CCIP)

Future Developments

- Perform 100 L algae + composite experiment
- Develop Thermodynamic, Kinetic and Mass Transfer Model
- Integrate ALBUS at TEP and scale up to 1000 L
- Produce algal biomass for diet study
- Develop TEA and LCA models

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

- Detailed team roles
- Organization Chart
- Gant Chart
- Milestone Timeline
- Success Criteria year 1
- Risk and mitigation strategy year 1

Key Personnel	Institution	Tasks	Title, Roles					
T. Currin	SWT	Tasks 1,2,3,4,5,6,7	CEO, PI					
M. Ceron Hernandez	LLNL	Tasks 2,3,7	Research Staff Scientist, LLNL PI					
C. Santoyo	LLNL	Tasks 2,3	Staff Scientist, Composite Characterization					
E. Johnson	LLNL	Task 3	MSIIP Summer Student, Composite scale up					
T. Lane	SNL	Tasks 2,3	Research Staff Scientist, SNL PI					
M. Tran-Gyamfi	SNL	Tasks 2,3	Technical Staff, Algae cultivation					
S. Mengel	SNL	Task 2	CCIP Summer Student, 20L Algae + Composite experiments					
K. Ogden	UA	Tasks 2,4,5,6	Professor, UA PI					
E. Saez	UA	Tasks 4	Professor, thermodynamic, kinetic and mass transfer model					
A. Martin	UA	Task 2	PhD Student, Piccolorium scale up.					
Nik Gruber	UA	Task 2	MS Student, varying CO ₂ concentrations to grow algae					
Armeen Pajouyan	UA	Task 4	MS Student, initial modeling					
Zoe Johnson	UA	Task 2	BS Student, varying salt concentrations and TIC analysis					

ALBUS Organization Chart

ALBUS Gant Chart Year 1

Lawrence Livermore National Laboratory LLNL-PRES-867839

ALBUS Gant Chart Year 2

Year 2											
	Q5			Q6		Q7					
Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul
Task 1. Project Management and Planning											
Task 5. Integration of ALBUS at TEP											
5.1 Grov	w algae in si	mulated fall	weather								
5.2 Proc	luce ~60kg o	of composite	e		MS	.2					
5.3 Syst	em integrat	ion at TEP			MS	.3					
5.4 Grov	w algae outo	doors at pilo	ot-scale								
Task 6. Production of Algae Diets											
6.1 Deve	elop drying s	system						Me	.1		
			6.2 Produ	uce algae for	diet study						
						6.3 Produ	ct practical	diets		M	.3
Task 7. Develop TEA and LCA models											
7.1 Full-	scale model								M7.	1	
7.2 LCC	and LCI inte	grated syste	em						M7.	2	
7.3 TEA-	LCA model	integration									

LLNL-PRES-867839

ALBUS Milestones Timeline

		1	Year 1		Year 2			
Tasks Name	Q1	Q2	2 Q3	Q4	Q5	Q6	Q7	Q8
		DND	JFM	AMJJJ) NDJ	FM	AMJJ
Task 1. Project Management and Planning								
M1.1 Project management plan (PMP)								
Task 2. Characterize Growth of Algal Strain								
M2.1 (SMART): Select one algae strain and their optimal media conditions								
M2.2: Determine baseline algal growth, and mass balances of N and S species.								
M2.3: Determine algae growth using sorbent-supplied CO_2 .								
Task 3. Test and Scale up Composite Sorbent Production								
M3.2 (SMART): Demonstrate loading capacity of >70% over 30 days testing								
M3.3: Desing and build CO_2 absorption column and desorption spool-automated system.								
M3.4 (SMART): Produce ~ 30 kg of composite sorbent for indoor experiments.								
Task 4. Develop Thermodynamic, Kinetic and Mass Transfer Model								
M4.1: Define operating conditions and process design for sorbent loading								
M4.2: Determine effects of pH and CO_2 speciation on algae growth								
M4.3: Mass transfer model validated with experimental data.								
M4.5: System mass transfer model validated with experimental data								
Task 5. Integration of ALBUS at TEP								
M5.2 (SMART): Produce ~ 60 kg of composite sorbent								
M5.3: Integrate composite sorbent CO ₂ absorption column/spool-automated delivery system at TEP								
Task 6. Production of Shrimp Diets								
M6.1 (SMART): Dry algae cultivated during the 30 days outdoor pilot-scale.								
M6.3: Formulate dried algal meal.								
Task 7. Develop TEA and LCA models								
M7.1: Develop models of integrated carbon capture/algal cultivation systems								
M7.2: Validate cost and GHG models with data from fully integrated system								

Success Criteria. Risk and Mitigation Strategies Year 1

Demonstrate 10% increase in algae growth using CO_2 from composite sorbent vs CO_2 sparged cultures.

Produce ~30 Kg of composite sorbent

Risk	Mitigation Strategy
Building and installing CO ₂ capture system at TEP power plant	Multiple sources of flue gas available to reroute slip streams
Scalability of composite sorbent	Leverage SWT and LLNL experience on material scale-up
Algal growth inhibition of trace contaminants in flue gas	Testing multiple strains at bench and slip stream scale.
Weather – Culture crashes	Maintain backup cultures, perform outdoor experiments during spring

