Recyclable Polyesters Made From CO₂

2024 FECM/NETL Carbon Management Research Project Meeting

US DOE STTR Phase II DE-SC0022839

Ian A Tonks, PhD CSO, LoopCO2 Professor, University of Minnesota – Twin Cities

Company Overview

FOXCONN <DUPONT> NSF Center for **Sustainable Polymers**

SBIF

Background

- o Spin-out from UMN & CSP in 2022
- HQ at Massachusetts with UMN collaboration
- Seed funded by DOE STTR Phase II & MassVentures

Vision

o Reduce the carbon footprint and promote circular economy in the material industry.

Mission

Develop a wide coverage of $CO₂$ and biomass – derived products which have chemical recyclability, biodegradability, negative carbon emissions

Technology Background

Core tech: lactones and polymers derived from CO₂ and butadiene

WO2022187490A1

- only polyester from CO₂ and olefins ever made. Almost 30% by weight CO₂
- **combines a commodity olefin feedstock (butadiene)**
- near the thermodynamic limit of CO₂ fixation by olefins (dG = -0.6 kcal/mol)
- **low ceiling temperature, chemically recyclable**
- **quantitative chemical recycling through reactive distillation at 130 oC**
- **biodegradable according to OECD-301B (wastewater)**

3

Technology Background

Core tech: lactones and polymers derived from CO₂ and butadiene

WO2022187490A1

Article | Published: 27 June 2022

Tunable and recyclable polyesters from $CO₂$ and **butadiene**

Rachel M. Rapagnani, Rachel J. Dunscomb, Alexandra A. Fresh & Ian A. Tonks¹

Nature Chemistry 14, 877–883 (2022) Cite this article

4

Value Proposition of Our Polyesters

Sustainable Raw Materials Harness bio-butadiene and CO2 to create a carbon-negative material

Circularity

Efficient and gentle chemical recycling, transforming waste back into virgin monomers even from copolymers

$\circ \Xi$

Low Viscosity

Maintaining low viscosity at ambient temperatures to streamline processing

Drop-in co-monomer

Easily copolymerizes with lactone monomers for diverse applications, enhancing your product sustainability

Project Objectives

US DOE STTR Phase II Grant (DE-SC0022839) \$1,600,000 (\$480,000 to U Minnesota)

Recyclable Polyesters from CO₂ • August 2023 – August 2025

Project Objectives

US DOE STTR Phase II Grant (DE-SC0022839) \$1,600,000 (\$480,000 to U Minnesota)

Recyclable Polyesters from CO2 • August 2023 – August 2025

- **Patented Technology:** • Optimize synthetic process of CO₂-derived polyesters and copolymers
	- **Develop proprietary applications for refined polymers**
	- Improve the overall lifecycle profile/emissions profile of CO₂-derived lactone monomers
	- Develop a pilot plant for scalable, commercially viable CO₂-derived polyesters
	- **Engage in customer outreach and marketing to identify potential customers/partners**

Approach and Team

Fundamental catalysis R&D, initial scale-up *University of Minnesota*

Ian Tonks PI

Arron Deacy Postdoc

Development of polymer applications *LoopCO2*

Jimmy Chiu Evan Smith Anuja Tamhane PI Research Assistants

LCA and TEA *WAP Sustainability*

Engineering, pilot reactor design and scale-up *Hickory Run Consulting*

Tony Cartolano Engineering Consultant

Project Schedule

First 6 Months:

- **Optimize monomer syntheses with LCA feedback loop (complete)**
- **Deep exploration of polymer properties for key applications (ongoing)**

Second 6 Months:

- Optimize CO₂-based polymer synthesis (ongoing)
- **Pilot plant design and construction (ongoing)**

Year 2:

- **• Scale up, commission plant, ship test samples to partners**
- **Continue to design and test products/polymer properties**
- **Identify partners for continued development/licensing/sales**

initial gram-scale synthesis from UMN team:

step 1: telomerization

initial gram-scale synthesis from UMN team:

initial gram-scale synthesis from UMN team:

step 3: polymerization

SBIR

initial gram-scale synthesis from UMN team:

step 3: polymerization *major challenges:*

SBIR

- **• reactions not scalable beyond ~5 g**
- **costly catalyst system**
- **reduction to EtVP very expensive**
- overall LCA impractically bad 200 kg CO₂ **per kg polymer**

initial gram-scale synthesis from UMN team:

ROH 1% PPA 5% TBD bulk, RT **EtVP** poly(EtVP)

step 3: polymerization *Milestones toward optimization:*

- **• replaced expensive Pd catalyst with simpler,** cheaper system based on PPh₃/Pd(acac)₂
- **developed strategies for solvent, catalyst, and butadiene recycling**
- **scaled reaction to 1 L Parr reactor (0.5 kg yield of EVP per 24 h cycle), distillation purification**

initial gram-scale synthesis from UMN team:

step 3: polymerization *Milestones toward optimization:* **ROH 1% PPA 5% TBD** bulk, RT **EtVP** poly(EtVP)

SBIR

- **developed Mg/MeOH reduction to EtVP**
- **researching electrocatalytic reductions**
- **scaled to 1 L Parr reactor (0.3-0.5 kg DEP per 24 hr cycle)**

initial gram-scale synthesis from UMN team:

- **• replaced TBD catalyst with inexpensive urea catalysts, which are more active and lead to higher molar mass polymers**
- **now have access to multi-hundred gram scale polymerization reactions for applications research!**

Life Cycle Analysis with WAP Sustainability:

SBIF

• cradle-to-gate LCA has improved dramatically for our new process

• LCA does *not* **account for potential biobased butadiene sources, which would result in potentially** *negative carbon emissions*

• sticking point: how to get CO₂ at high pressure cheaply **and in an energy-efficient manner?**

• sticking point: Pd catalyst is still a CO₂ LCA problem. can we use a heterogeneous catalyst?

Initial lab scale 1 kg polyester production

EVP		EtVP		Poly(EtVP)	
Raw Material	Cost	Raw Material	Cost	Raw Material	Cost
CO ₂	\$5.9	trichlorosilane	\$2.0	(initiator)	\$0.2
Butadiene	\$5.6	EVP	\$41.3	(catalyst)	\$0.4
$Pd(dba)$,	\$1.5	(catalyst)	\$2.3	EtVP	\$58.0
$P(o-OMePh)_{3}$	\$22.5	(solvent)	\$0.7		
MeCN solvent**	\$0.5				
Sum	\$35.9	Sum	\$46.4	Sum	\$58.6

Milestones toward optimization: **1-L continuous miniplant 1 kg polyester production**

****Solvent was assumed to be recycled 20 times for both processes**

SBIF

- **Pressure-Sensitive Adhesives key discovery: high molar mass (100 kDa) polyesters are needed for efficient adhesion (well above entanglement Mn of 15 kDa)**
	- **more efficient, long-lived urea catalysts discovered in UMN lab enabled access to high enough molar masses**

• useful application for degradable *single use plastics*

SBIR

SBIR

Hard to Apply

Easy to Apply

 10^6

polyols can be used as drop-in replacements for diols in TPUs and TPEs in simple 1-step processes to make elastomers

• key discovery: LoopCO2 polyols can be used as drop-in replacements for diols in TPUs and TPEs in simple 1-step processes to make elastomers

Technical Data of Exemplary Elastomers

CO2StretchTM Monomer (90+%)

SBIR

25

Benchmark Analysis – Carbon Utilization

Loop CO2's material have more benefits over other CO2 incorporated polymers

26

Benchmark Analysis – Soft Polyesters

Loop CO2' materials have more benefits from the input end compared to other soft polyesters.

27

©Loop CO2 -All Rights Reserved

SBIR

Circular Polyester Uses

Objective 4: Pilot Plant

- **20 L pilot plant under construction in Marlborough, MA**
- **Uses optimized reaction and purification conditions from UMN team research**
- **Engineering contracted out with Hickory Run Consulting**
- **Contract installation and safety assessment by SPEC process engineering**
	- **Completion date: December 2024**
	- Anticipated cost of CO₂-derived monomers: **\$1.5-\$3/kg (compare to \$2-\$3 for petroleumderived monomers)**

Hickory Run Consulting, LLC [O]SPEC

Objective 5: Customer/Partner Outreach

Participating in DOE Phase II Shift Program and MassChallenges Program

- **Interviewed >50 companies across the industry to identify potential needs**
- **Identified parallel commercialization strategies around monomer sales and specialty polymer sales/licensing/partnerships**
- Evonik, Naopao, IVT, Eternal, L'Oreal, your company??) for formulation **• Monomer/polymer samples will be shared with interested companies (BASF, (co)development upon completion of pilot plant in Dec 2024**

Lessons Learned

• Everyone loves the idea of CO₂ derived polyesters but needs to be cost-competitive with petroleum *and have specific properties companies are looking for. There is more leeway on cost in higher-margin industries such as cosmetics, providing entrypoints*

• Pressure-points remain in our process:

(1) how do we access inexpensive high-quality, high-pressure CO₂?

(2) can we move beyond Pd, or use heterogeneous catalysts?

• There is significant interest in both monomer and polymer production: chemical companies can use monomers as drop-in replacements; manufacturers can use polymers in new/replacement formulations

• University-Start Up Partnerships help with simplify and streamline complex process engineering + materials development projects

Thank You!

DE-SC0022839

