Recyclable Polyesters Made From CO₂

2024 FECM/NETL Carbon Management Research Project Meeting

US DOE STTR Phase II DE-SC0022839

Ian A Tonks, PhD CSO, LoopCO2 Professor, University of Minnesota – Twin Cities

Company Overview

CEO

CSO

FOXCONN® OUPONT NSF Center for Sustainable Polymers

SBIR

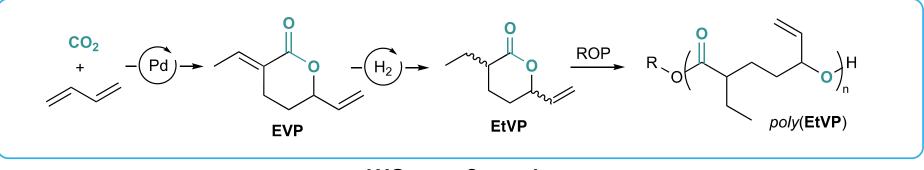
Background

- Spin-out from UMN & CSP in 2022
- o HQ at Massachusetts with UMN collaboration
- Seed funded by DOE STTR Phase II & MassVentures

Vision

• Reduce the carbon footprint and promote circular economy in the material industry.

Mission


 Develop a wide coverage of CO₂ and biomass – derived products which have chemical recyclability, biodegradability, negative carbon emissions

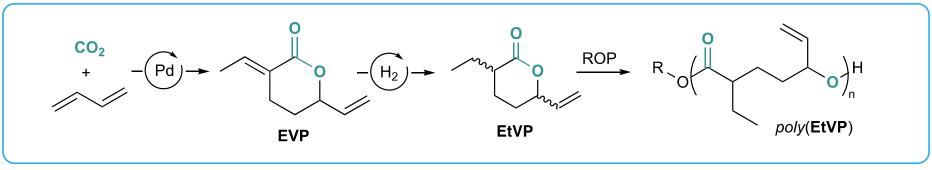
Technology Background

Core tech: lactones and polymers derived from CO₂ and butadiene

WO2022187490A1

- only polyester from CO₂ and olefins ever made. Almost 30% by weight CO₂
- combines a commodity olefin feedstock (butadiene)
- near the thermodynamic limit of CO₂ fixation by olefins (dG = -0.6 kcal/mol)
- low ceiling temperature, chemically recyclable

SBIF

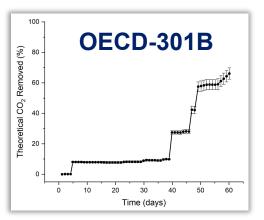

- quantitative chemical recycling through reactive distillation at 130 °C
- biodegradable according to OECD-301B (wastewater)

3

Technology Background

Core tech: lactones and polymers derived from CO₂ and butadiene

WO2022187490A1


Article Published: 27 June 2022

Tunable and recyclable polyesters from CO₂ and butadiene

Rachel M. Rapagnani, Rachel J. Dunscomb, Alexandra A. Fresh & Ian A. Tonks

Nature Chemistry 14, 877–883 (2022) Cite this article

Value Proposition of Our Polyesters

Sustainable Raw Materials Harness bio-butadiene and CO₂ to create a carbon-negative material

Circularity

Efficient and gentle chemical recycling, transforming waste back into virgin monomers even from copolymers

Low Viscosity

Maintaining low viscosity at ambient temperatures to streamline processing

Drop-in co-monomer

Easily copolymerizes with lactone monomers for diverse applications, enhancing your product sustainability

Project Objectives

US DOE STTR Phase II Grant (DE-SC0022839) \$1,600,000 (\$480,000 to U Minnesota)

Recyclable Polyesters from CO₂ • August 2023 – August 2025

Project Objectives

US DOE STTR Phase II Grant (DE-SC0022839) \$1,600,000 (\$480,000 to U Minnesota)

Recyclable Polyesters from CO₂ • August 2023 – August 2025

- Optimize synthetic process of CO₂-derived polyesters and copolymers
- Develop proprietary applications for refined polymers
- Improve the overall lifecycle profile/emissions profile of CO₂-derived lactone monomers
- Develop a pilot plant for scalable, commercially viable CO₂-derived polyesters
- Engage in customer outreach and marketing to identify potential customers/partners

Approach and Team

Fundamental catalysis R&D, initial scale-up University of Minnesota

Ian Tonks Pl

Arron Deacy Postdoc

Development of polymer applications *LoopCO2*

Jimmy Chiu Pl

Evan Smith Anuja Tamhane Research Assistants

LCA and TEA WAP Sustainability

Engineering, pilot reactor design and scale-up *Hickory Run Consulting*

Tony Cartolano Engineering Consultant

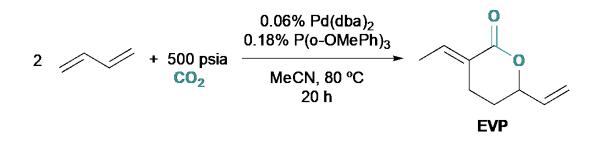
Project Schedule

First 6 Months:

- Optimize monomer syntheses with LCA feedback loop (complete)
- Deep exploration of polymer properties for key applications (ongoing)

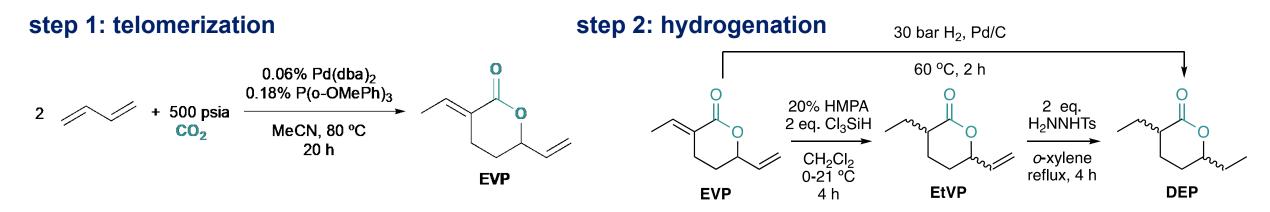
Second 6 Months:

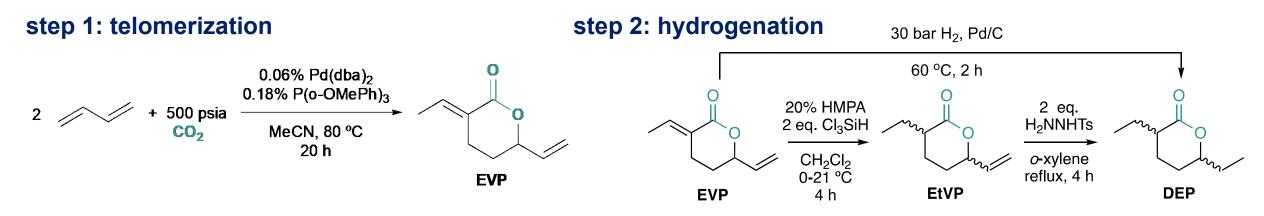
- Optimize CO₂-based polymer synthesis (ongoing)
- Pilot plant design and construction (ongoing)

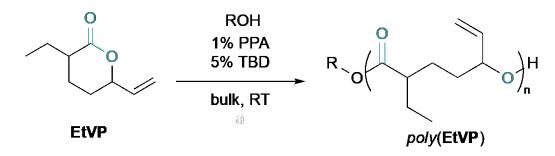

Year 2:

- Scale up, commission plant, ship test samples to partners
- Continue to design and test products/polymer properties
- Identify partners for continued development/licensing/sales

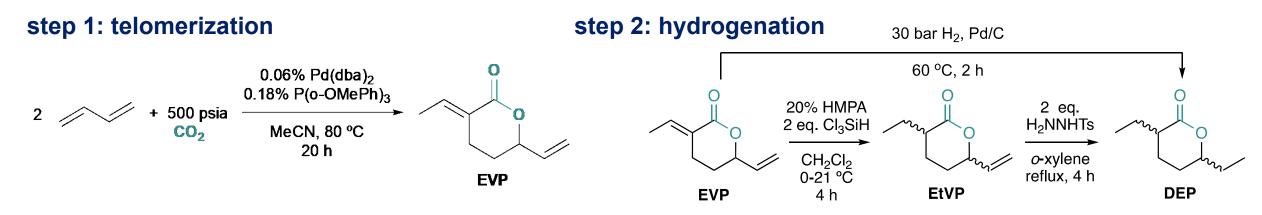
initial gram-scale synthesis from UMN team:


step 1: telomerization


initial gram-scale synthesis from UMN team:



initial gram-scale synthesis from UMN team:


step 3: polymerization

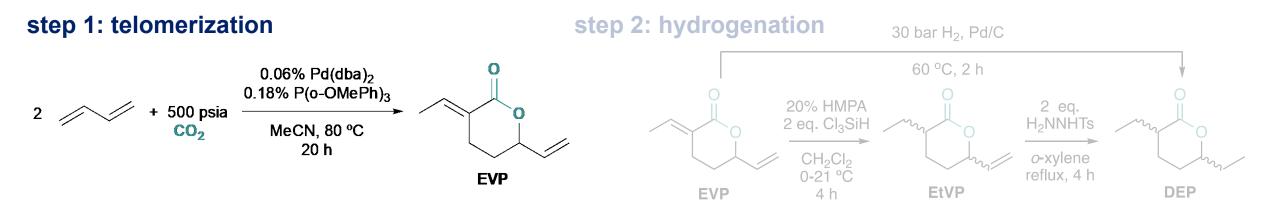
SBIR

initial gram-scale synthesis from UMN team:

step 3: polymerization $\begin{array}{c}
 & \text{ROH} \\
 & 1\% \text{ PPA} \\
 & 5\% \text{ TBD} \\
 & \text{bulk, RT} \\
 & \text{EtVP} \end{array} \xrightarrow{(a)} R \circ (\downarrow (\downarrow \downarrow \downarrow \downarrow)) \\
\end{array}$

SBIR

major challenges:

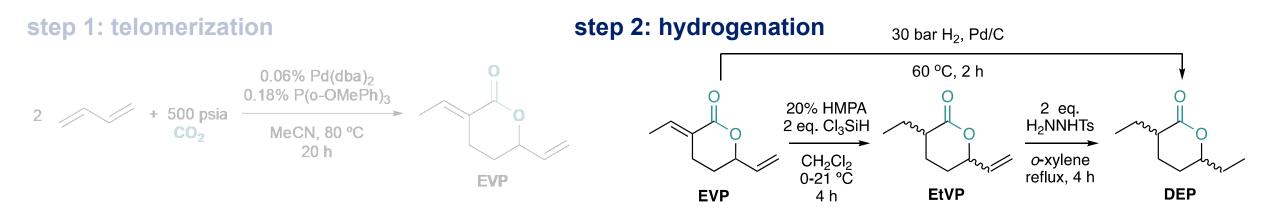

- reactions not scalable beyond ~5 g
- costly catalyst system
- reduction to EtVP very expensive
- overall LCA impractically bad 200 kg CO₂ per kg polymer

Η

initial gram-scale synthesis from UMN team:

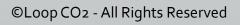
step 3: polymerization $\begin{array}{c}
 & \text{ROH} \\
 & 1\% \text{ PPA} \\
 & 5\% \text{ TBD} \\
 & \text{bulk, RT} \\
 & \text{etvp} \end{array}$ $\begin{array}{c}
 & \text{ROH} \\
 & 1\% \text{ PPA} \\
 & 5\% \text{ TBD} \\
 & \text{bulk, RT} \\
 & \text{poly(EtvP)} \end{array}$

SBIR

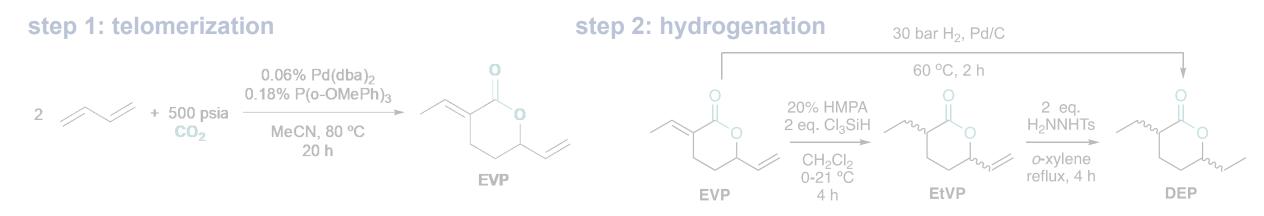

Milestones toward optimization:

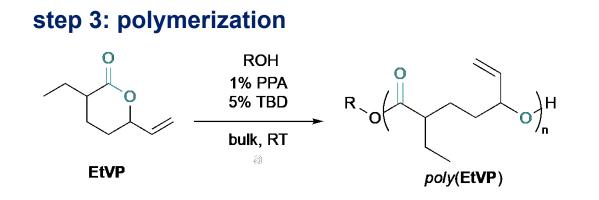
- replaced expensive Pd catalyst with simpler, cheaper system based on PPh₃/Pd(acac)₂
- developed strategies for solvent, catalyst, and butadiene recycling
- scaled reaction to 1 L Parr reactor (0.5 kg yield of EVP per 24 h cycle), distillation purification

initial gram-scale synthesis from UMN team:


step 3: polymerization $\begin{array}{c}
 & \text{ROH} \\
 & 1\% \text{ PPA} \\
 & 5\% \text{ TBD} \\
 & \text{bulk, RT} \\
 & \text{etvp} \end{array}$

SBIR


Milestones toward optimization:

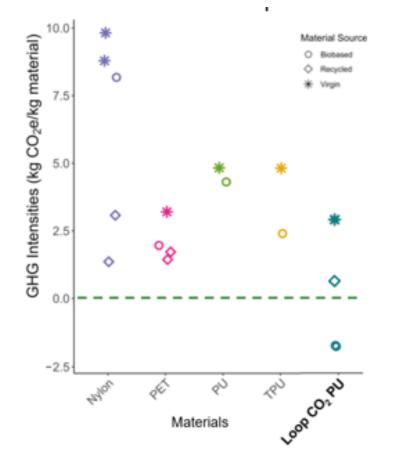

- developed Mg/MeOH reduction to EtVP
- researching electrocatalytic reductions
- scaled to 1 L Parr reactor (0.3-0.5 kg DEP per 24 hr cycle)

initial gram-scale synthesis from UMN team:

SBIR

Milestones toward optimization:

- replaced TBD catalyst with inexpensive urea catalysts, which are more active and lead to higher molar mass polymers
- now have access to multi-hundred gram scale polymerization reactions for applications research!



Life Cycle Analysis with WAP Sustainability:

SBIR

	Result [kg CO2e/kg of TPU]			
April 2023	200			
June 2024 (excluding captured CO ₂) ¹	5.0			
June 2024 (including captured CO ₂) 3.8				
¹ Scenario modeled assuming no CO ₂ capture as a conservative estimate given uncertainty				
around captured CO ₂ source.				

cradle-to-gate LCA has improved dramatically for our new process

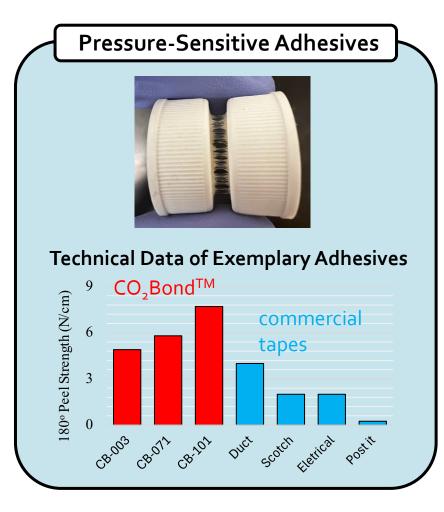
• LCA does *not* account for potential biobased butadiene sources, which would result in potentially *negative carbon emissions*

• sticking point: how to get CO₂ at high pressure cheaply and in an energy-efficient manner?

• sticking point: Pd catalyst is still a CO_2 LCA problem. can we use a heterogeneous catalyst?

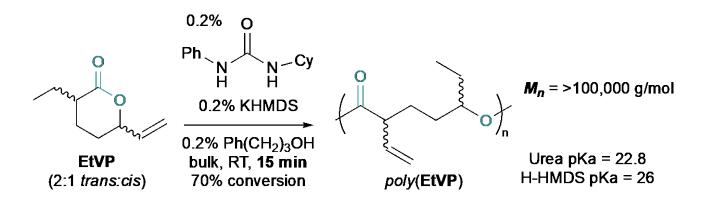
Initial lab scale 1 kg polyester production

EVP		EtVP		Poly(E	Poly(EtVP)	
Raw Material	Cost	Raw Material	Cost	Raw Material	Cost	
CO ₂	\$5.9	trichlorosilane	\$2.0	(initiator)	\$0.2	
Butadiene	\$5.6	EVP	\$41.3	(catalyst)	\$0.4	
Pd(dba) ₂	\$1.5	(catalyst)	\$2.3	EtVP	\$58.0	
P(o-OMePh) ₃	\$22.5	(solvent)	\$0.7			
MeCN solvent**	\$0.5					
Sum	\$35.9	Sum	\$46.4	Sum	\$58.6	

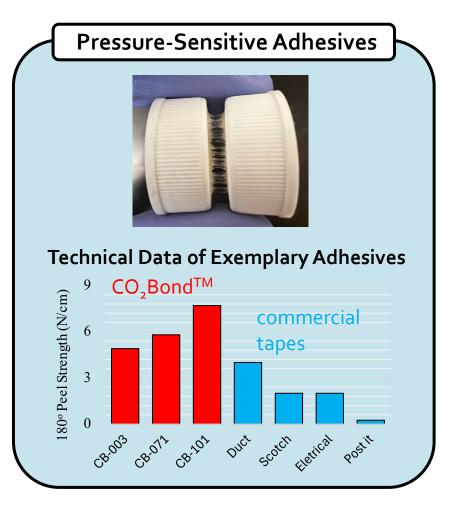

1-L continuous miniplant 1 kg polyester production

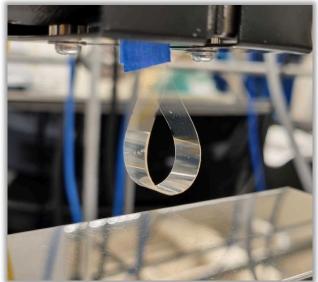
Raw Material	Cost*	Raw Material	Cost*	Raw Material	Cost*
CO2	\$3.7	trichlorosilane	\$2.0	(initiator)	\$0.2
Butadiene	\$2.4	EVP	\$7.7	(catalyst)	\$0.4
Pd(acac) ₂ (catalyst)	\$0.5	(catalyst)	\$2.3	EtVP	\$15.9
PPh ₃ (ligand)	\$0.0	(solvent**)	\$0.7		
MeCN solvent**	\$0.1	. ,			
Sum	\$6.7	Sum	\$12.7	Sum	\$16.6

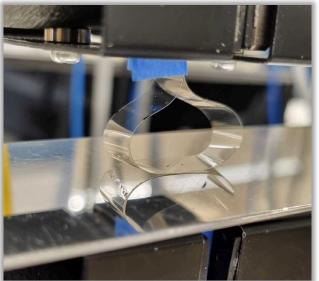
**Solvent was assumed to be recycled 20 times for both processes

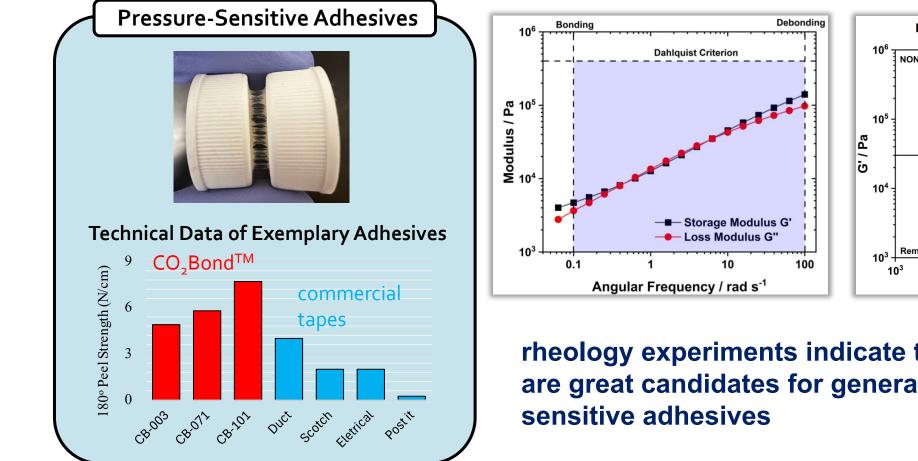

SBIR

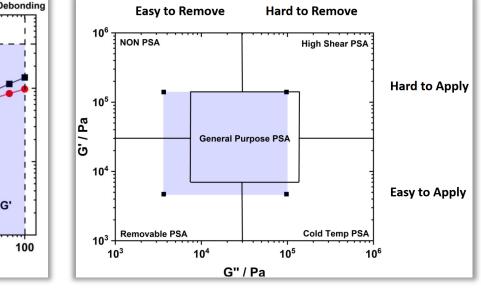
 key discovery: high molar mass (100 kDa) polyesters are needed for efficient adhesion
 (well above entanglement Mn of 15 kDa)

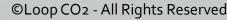

• more efficient, long-lived urea catalysts discovered in UMN lab enabled access to high enough molar masses


• useful application for degradable *single use plastics*

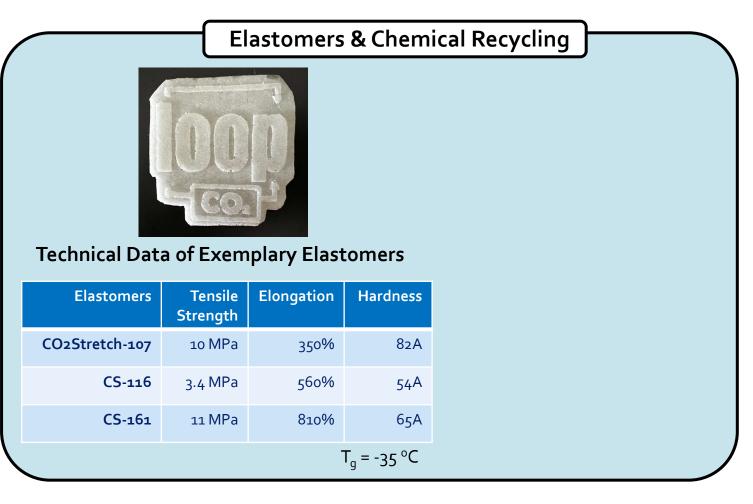




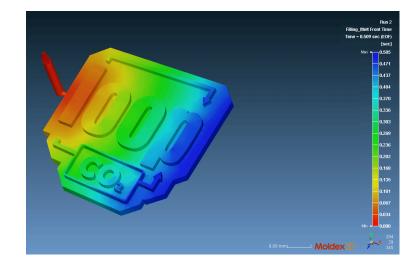




SBIR



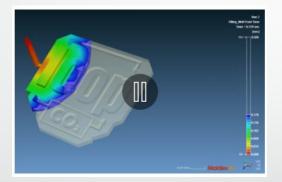
rheology experiments indicate that CO₂Bond adhesives are great candidates for general purpose pressure-

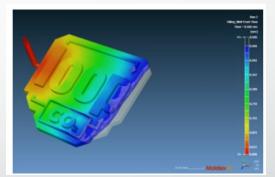

• key discovery: LoopCO2 polyols can be used as drop-in replacements for diols in TPUs and TPEs in simple 1-step processes to make elastomers

• key discovery: LoopCO2 polyols can be used as drop-in replacements for diols in TPUs and TPEs in simple 1-step processes to make elastomers

Technical Data of Exemplary Elastomers


	Elastomers	Tensile Strength	Elongation	Hardness		
	CO2Stretch-107	10 MPa	350%	82A		
	CS-116	3.4 MPa	560%	54A		
	CS-161	11 MPa	810%	65A		
	T _g = -35 °C					





SBIR America's S

25

Benchmark Analysis – Carbon Utilization

Loop CO2's material have more benefits over other CO2 incorporated polymers

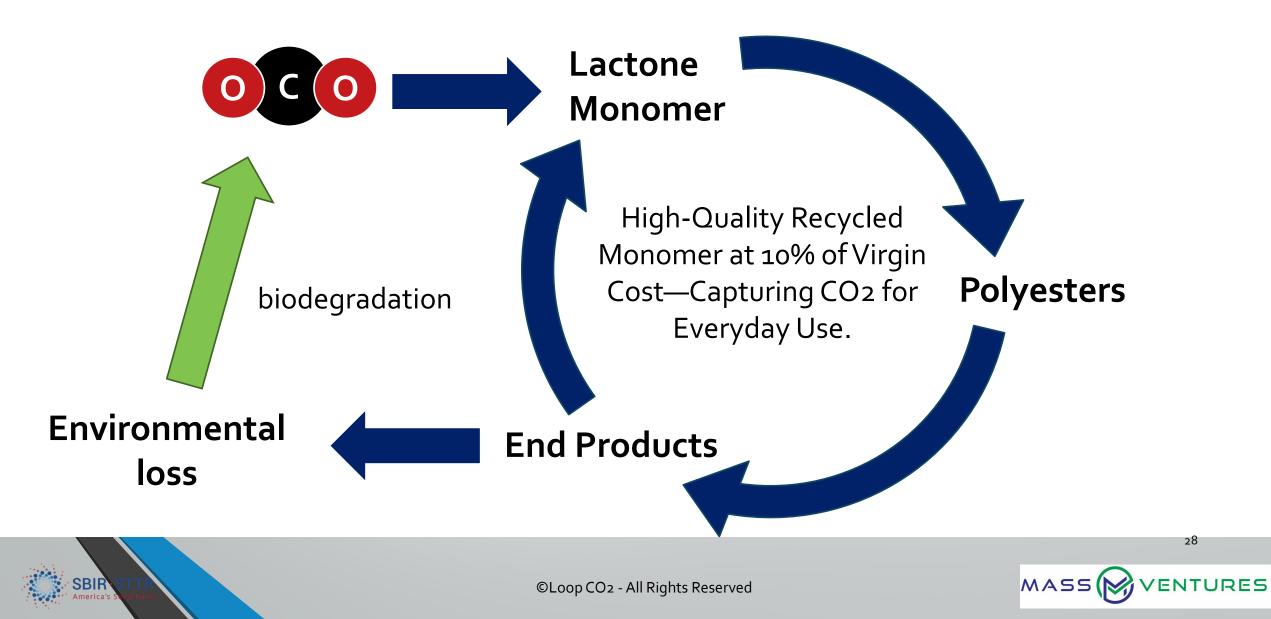
	Materials	Key players	Biomass utilization	Chemical recyclability	Bio- degradability	Product coverage
LS]	Polylactone	Loop CO2	Yes	Easy	Yes	Wide
$_{ m ar{l}}$ polyesters	Polyethylene furanoate (PEF/FDCA)	Resource	Yes	Not easy	Not reported but possible	Limited
	Polycarbonate	Aramco Covestro Econics Twelve	No	Not exactly	No	Wide

26

Benchmark Analysis – Soft Polyesters

Loop CO2' materials have more benefits from the input end compared to other soft polyesters.

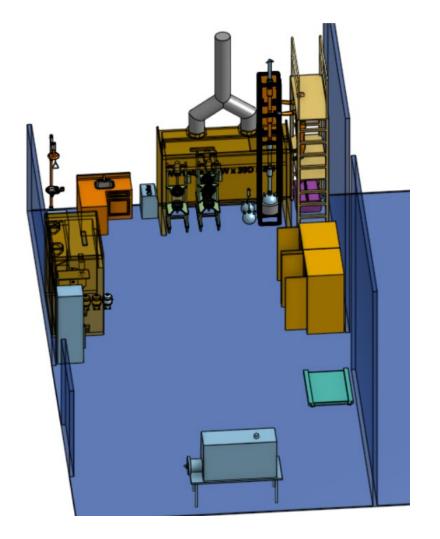
Materials	Key players	Carbon- negative production	Chemical recyclability	Bio- degradability	Product coverage
CO2 polyester	Loop CO2	Yes	Easy (100 °C)	Yes	Wide
Poly Caprolactone	BASF Ingevity Daicel Corbion	No	More difficult (180+ °C)	Yes	Wide
Poly adipates	BASF Emery Oleo Cargill	Not really (biobased still positive emission)	More difficult (230+ °C)	Yes	Wide



27

©Loop CO2 - All Rights Reserved

SBIR


Circular Polyester Uses

Objective 4: Pilot Plant

- 20 L pilot plant under construction in Marlborough, MA
- Uses optimized reaction and purification conditions from UMN team research
- Engineering contracted out with Hickory Run Consulting
- Contract installation and safety assessment by SPEC process engineering
- Completion date: December 2024
- Anticipated cost of CO₂-derived monomers: \$1.5-\$3/kg (compare to \$2-\$3 for petroleumderived monomers)

Hickory Run Consulting, LLC

Objective 5: Customer/Partner Outreach

Participating in DOE Phase II Shift Program and MassChallenges Program

- Interviewed >50 companies across the industry to identify potential needs
- Identified parallel commercialization strategies around monomer sales and specialty polymer sales/licensing/partnerships
- Monomer/polymer samples will be shared with interested companies (BASF, Evonik, Naopao, IVT, Eternal, L'Oreal, your company??) for formulation (co)development upon completion of pilot plant in Dec 2024

Lessons Learned

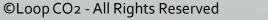
• Everyone loves the idea of CO₂ derived polyesters but needs to be cost-competitive with petroleum and have specific properties companies are looking for. There is more leeway on cost in higher-margin industries such as cosmetics, providing entrypoints

• Pressure-points remain in our process:

- (1) how do we access inexpensive high-quality, high-pressure CO_2 ?
- (2) can we move beyond Pd, or use heterogeneous catalysts?

• There is significant interest in both monomer and polymer production: chemical companies can use monomers as drop-in replacements; manufacturers can use polymers in new/replacement formulations

• University-Start Up Partnerships help with simplify and streamline complex process engineering + materials development projects


Thank You!

SBIR

DE-SC0022839

