A Pressure-Swing Process for Reactive CO₂ Capture and Conversion to Methanol through Precise Control of Co-Located Active Sites in Dual Functional Materials (FWP-FY21-RCC-LAB-CALL)

Anh To

National Renewable Energy Laboratory (NREL)

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project objective

- This project will design and develop tailored dual-function materials (DFMs) and the accompanying pressure-swing process for reactive capture and conversion (RCC) of CO₂ to directly produce methanol (MeOH)
- This process targets deployment at a natural gas-fired power plant

Project Overview

Overall Project Performance Dates: Oct 1, 2021 – Dec 30, 2024

- \$2,670k over 3 years
- Lead DFM Characterization
 - Wilson McNeary
- Lead performance testing for CO₂ to MeOH
 - Anh To
- Lead process modeling, techno-economic and life cycle analyses (TEA, LCA)
 - Jonathan Martin
- Project Management
 - Anh To

- \$283k over 3 years
- Lead synthesis of dualfunction materials (DFMs)
 - Prof. Al Weimer
- Atomic layer and molecular layer deposition (ALD, MLD)
- Assist DFM characterization

- \$35k in year 3
- Assist technology
 maturation for DFM
 scalability via ALD/MLD
 - Arrelaine Dameron
 - Staci Moulton

Task 1: DFM Synthesis & Characterization Task 2: RCC performance evaluation Task 3: Process modelling & scale-up

How the process works

- Multi-bed capture-conversion system.
- DFM design is critical for successful deployment.
- T or P swing to optimize product formation with each DFM.

Key Challenges

- Capture AND conversion rates cycle time dictates production rate
- Separations and purity of MeOH product
- Ability to partially recycle product stream

How the chemistry works

2-step capture-convert chemistry

- Amine or metal oxides for binding and activating CO₂ by formation of surface intermediates
- Metallic site for subsequent hydrogenation of captured CO₂ (or intermediates) to products
- Metallic sites chosen to favor H₂ activation (Pt, Au, Pd) and MeOH production (e.g., Pd, Cu).

Key Challenges

- Capture capacity and efficiency
- Hydrogenation activity in the presence of basic sites
- Stability in the presence of contaminants (O₂, moisture, etc.)
- Optimizing selectivity

Unique aspects of this project

Materials Chemistry

Precise control of base and metal sites

Catalysis

- T & P swing reactor to achieve high conversion efficiency and product selectivity
- Avoids high-T costs compared to methanation (>400 °C): capex, opex, low product value

Process Design, TEA and LCA

- CO₂ conversion step using renewable H₂
- HOPP tool to optimize on-site renewable H₂ production
- Modular process design to match energy demand and availability

Experimental Design

DFM Synthesis & Characterization

- 3 groups of DFM have been investigated:
 - Amines on Pd-deposited SiO₂ (solution phase / MLD)
 - Alkali / Alkaline modification of CZA (commercial MeOH synthesis catalyst)
 - Alkali / Alkaline modification of Zn-Al mixed oxides (in-house synthesized)
- Structural and active site characterization (H₂ chemisorption)
- CO₂ adsorption performance: chemisorption and thermogravimetric analysis
- Binding geometries of CO₂ (in situ DRIFTS)

RCC Evaluation

- 0.5 1.0 g-scale single-bed system for the 2-step capture-convert process
- T & P swing reactor to achieve high conversion efficiency and product selectivity
- Tailored gas compositions & ability to study the effects of impurities (O₂ and H₂O)

Integrated TEA and LCA framework

- RCC process on Aspen
- CO₂ conversion step using renewable H₂
- HOPP tools to optimize on-site renewable H₂ production

Project schedule & Key milestones

Milestones at 6-month intervals (8 total over 36 months)

- 03/22: Synthesize and characterize at least 12 first-generation DFMs
- 12/22: Evaluate RCC performance of DFMs at bench scale
- 06/23: Achieve stable RCC performance over 20 cycles
- 06/23: Build initial process model with TEA, LCA
- 12/23: Optimize RCC performance to achieve TEA informed performance metrics (including DFM design and RCC process conditions)
- 06/24: Identify critical hurdles to DFM and process scale-up
- 09/24: Evaluate best performing DFM(s) for 100 RCC cycles under optimized conditions & study effects of contaminants (O₂ & water)
- 12/24: Final report with process model, TEA, LCA. Develop deactivation mitigation and regeneration protocols for DFMs.
- Success Criteria: Go/No-Go Decision Points
- 03/23: Determine performance metrics needed to achieve favorable carbon intensity and economics versus baseline methanol production with and without CCS. Achievable performance results in a 'go'.
- 09/24: Demonstrate stability over 100 cycles. 90% of original activity 8 results in a 'go'.

RCC to MeOH with M/CZA

 CO_2 capture: 100 °C, 1 bar, 1% CO_2/N_2 stream

Each material was run for 5 RCC cycles, Data are average of the last 3 cycles

With highest capture capacity, conversion/carbon balance, MeOH selectivity and yield, and lowest CH₄ yield, K/CZA and Na/CZA are the most promising materials

5 wt% Alk/CZA (incipient wetness impregnation on commercial MeOH synthesis catalyst)

- Catalysts were dried at 120 °C for >12h after impregnation
- Prereduction at 250 °C prior to characterization or activity testing

Important factors effecting RCC activity to MeOH

Strong CO₂ adsorption capacity

Configuration of adsorbed species

Catalysts were reduced at 250 °C prior to characterization

□ Ca or Ba slightly increased strong CO₂ uptake, but did not affect binding geometry

K or Na significantly increased strong CO₂ uptake and altered binding geometry

Preliminary stability testing

 CO_2 capture: 100 °C, 1 bar, 1% CO_2/N_2 stream Reactive desorption: pure H_2 , 250 °C, 30 bar for 2h \rightarrow 1 bar for 1h

- Strong CO₂ ads. - MeOH - CO - CH₄ - DME - CO₂ des.

- Capture capacity and activity drops during the first 10 cycle, then stabilized
- Na/CZA is more stable and produce higher
 MeOH selectivity → selected for further study

Design of Experiments to maximize S_{MeOH} with Na/CZA

Sorbent loading (ox. Wt %)	Hyd. P (bar)	Hydrogenation T (C)	H ₂ concentration
1	30	200	100
1	10	250	100
1	10	200	100
1	10	200	10
1	30	250	10
1	30	250	100
5.05	30	200	10
5.05	10	200	100
5.05	10	250	10
5.05	10	250	10
5.05	30	250	100
5.05	30	200	10
10	30	250	10
10	10	200	100
10	30	250	100
10	10	250	100
10	10	200	10
10	30	200	100

5 parameters were studied:

- Adsorption T: separate studies with T from 100 – 250 °C → 100 °C is optimal.
- ✤ Sorbent loading (1 10 wt%)
- ✤ H₂ concentration (10 100%)
- ✤ Reaction T (200 250 °C)
- ✤ Reaction P (10 30 bar)
- DoE matrix was created by JMP software

Design of Experiments to maximize S_{MeOH} with Na/CZA

5 parameters were studied:

- Adsorption T: separate studies with T from 100 – 250 °C → 100 °C is optimal.
- ✤ Sorbent loading (1 10 wt%)
- ✤ H₂ concentration (10 100%)
- ✤ Reaction T (200 250 °C)
- ✤ Reaction P (10 30 bar)
- DoE matrix was created by JMP software

T, P and H2 concentration during reactive desorption are important parameters.
 Maximized MeOH selectivity: high Na loading, H2 conc., P and low T.
 Maximized MeOH productivity: high H2 conc., P and low Na loading and T.

Design of Experiments to maximize S_{MeOH} with Na/CZA

DOE point	Sorbent loading (ox. Wt %)	Hyd. P (bar)	Hyd. T (C)	H ₂ concentration
1	10	30	250	10
2	10	10	200	100
3	10	30	250	100
4	10	10	250	100
5	10	10	200	10
6	10	30	200	100

Maximized MeOH selectivity: high Na loading, H2 conc., P and low T.
 Best MeOH selectivity achieved: 98%
 With 10% Na/CZA at 100 °C capture T, 200
 °C and 30 bar hydrogenation with 100% H₂.

DFM for syngas production

DFM stability with O₂ presence

- Stable operation over extended RCC cycling and O_2 containing CO_2 capture streams
- With minimal change to crystalline structure and distribution of species

TEA & LCA study

TEA & LCA study

- Baseline CO₂ hydrogenation to MeOH process:
 - Commercial benchmark process (CRI)
 - Same CO₂ source, but CO₂ must be separated, purified & compressed
 - Process performance data from literature TEA studies

- RCC use CO₂ directly from diluted source
- Similar H₂ source & purity, but different amounts for each technology
- TEA comparison: levelized cost of MeOH (LCOM)
- LCA comparison: C intensity of MeOH production

TEA comparison

 \Box Cost of renewable H₂ is dominant

- Recycle of end gas is needed to make the process economically feasible
- RCC to MeOH using M/CZA DFM has comparable process economics to baseline CO2 HYD technology
- RCC to CO is still more costly due to compression cost for downstream MeOH synthesis unit

TEA & LCA study

- □ H₂ is major contributor for CI
- □ RCC to MeOH using M/CZA DFM has lower CI than baseline CO2 HYD technology and significant lower water consumption.
- □ RCC to CO still has higher CI due to compression requirement.
- Lower water consumption for RCC technology.

Location deployment analysis

- Scouted sites near existing 500 MW+ NGCC plants in the US
- H₂ generated by new wind/solar hybrid plants built near existing NGCC plants
- Calculates wind/solar ratio to minimize Hydrogen cost
- Metric: Levelized Cost of MeOH (LCOM) [\$/kg]
 - Levelized Cost of MeOH (LCOM) [\$/kg] (top map)
 - Carbon intensity (bottom map)
- Plant performance using unmodified CZA results. M/CZA update are underway

Summary

- □ 2 promising RCC pathways for MeOH production
 - Direct RCC-to-MeOH using M/CZA DFM
 - RCC-to-CO using M/ZA DFMs followed by MeOH synthesis
- High selectivity to targeted products (MeOH/CO)
- $\square Stable performance under oxidative CO₂ stream$
- □ Process modeling and TEA indicate that RCC to
- MeOH can be competitive to state-of-the-art CO₂ hydrogenation technology
- □ 1 patent submitted (USPTO No. 18/745,807)
- **2** published manuscripts
 - https://doi.org/10.1039/D3EY00254C
 - https://pubs.acs.org/doi/10.1021/acs.est.4c02589
- Project team participated in Energy I-Corps program (Cohort 18, team ReCapture)

22

Future plans

- Demonstrate stable RCC performance under optimized conditions.
- Update TEA / LCA model with most up-to-date experimental results
 - RCC-to-MeOH
 - *RCC-to-CO*
- Evaluate effects of contaminants (O₂, water vapor) to RCC performance, especially stability.
- Seeking strategic partnerships and co-operative R&D opportunities to further develop / scale-up RCC technology

Project managers Kara Zabetakis Michael Stanton

NREL team Daniel Ruddy Susan Habas Wilson McNeary Martha Arellano-Treviño

Chae Jeong-Potter Alex Hill Jonathan Martin Eric Tan

CU Boulder team Alan Weimer Hailey Loehde-Woolard **ForgeNano team** Arrelaine Dameron Staci Moulton Q & A

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding was provided by U.S. DOE Office of Fossil Energy and Carbon Management. The views expressed in this article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.