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Direct Air Reactive Capture and Conversion for Utility-Scale Energy Storage
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Goal: develop dual-functional material and process for capturing CO2 from the air and converting it to RNG

Four parallel tracks in direct air capture materials synthesis/characterization, catalysts for CO2 conversion, 
mechanistic investigations via ab initio simulations, and process modeling and systems analysis

Reactive Capture & Conversion R&D
FEW0277: $3,000k over FY22–FY24(+)
     10/1/2021 – 12/31/2024
Project Manager: Gregory Imler



Methanation of CO2 from the air can provide a distributable source of 
long-duration energy storage using a (nearly) carbon-neutral fuel
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Renewable electricity curtailed over the last year 
could have powered over 200,000 homes in CA
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Our goal is to develop a material and process to directly convert 
captured CO2 into methane without explicitly requiring desorption
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energy

Our goal is to develop a material and process to directly convert 
captured CO2 into methane without explicitly requiring desorption
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Project Overview
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Direct air capture Catalytic methanation Atomistic mechanism Reactive capture analysis

End-of-project success criteria: demonstrate 15% relative improvement in RNG Minimum Fuel Selling 
Price and Carbon Intensity using a reactive capture process compared to baseline scenario(s)

Achieved high CO2 
conversion and 
CH4 selectivity

Downselected materials and achieved stable 
performance with extended cyclic operation

Measured DAC 
capacity and kinetics 
for hybrid materials

Developed mechanism 
of bound-CO2 
methanation

Demonstrated 
improvement for 
reactive capture

Q3, Q8 Q4, Q9

Q6, Q11 Q5 Q6, Q13

• Graft capture agent on 
commercial oxides

• Evaluate adsorption 
performance (gravimetric 
and flow/breakthrough)

• Deposit highly dispersed 
metal catalysts

• Evaluate CO2 conversion 
performance (continuous 
and cyclic)

• Simulate interaction 
between capture agent 
and oxide surface

• Simulate interaction 
between captured CO2 and 
metal catalyst surface

• Simulate interaction at 
triple solid phase 
boundary

• Develop M&EB, TEA, LCA 
for baseline scenarios

• Develop reactive capture 
process model for 
comparison

Impact of fractional 
CO2 conversion

Q8



Our project has developed materials and protocols for thermal reactive 
capture, converting CO2 from the air into methane
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We developed a high-level process model for reactive capture and 
compared methods for creating renewable natural gas

Reactive CO2 Capture

A. Aui, S.H. Pang, et al. in preparation
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Milestone 8: Demonstrated impact of CO2 adsorption capacity
and fractional conversion on RNG MFSP

A. Aui, S.H. Pang, et al. in preparation
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The economics of reactive capture are dependent on achieving high 
conversion of CO2 to avoid downstream separations

A. Aui, S.H. Pang, et al. in preparation
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Our reactive capture strategy is cost comparable to other methods for 
forming renewable natural gas

A. Aui, S.H. Pang, et al. in preparation
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Storing energy as methane created via reactive capture is competitive 
with other forms of long-duration energy storage

A. Aui, S.H. Pang, et al. in preparation

If properly executed, reactive capture to methane could provide inexpensive long-duration energy storage



Milestone 5: Measured DAC adsorption capacity 
>0.40 mol CO2/kg
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RuNa2O

TiO2

Na2O/Ru/TiO2

Adsorption temperature or temperature profile 
impacts CO2 uptake under DAC conditions

dry uptake humid uptake



A candidate reactive capture cycle exposes captured CO2 to reactant 
gases while heating to convert it into products
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Milestone 6: Converted >50% of captured CO2 into CH4
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converted 
to CH4!

M. Rasmussen, S. Halingstad, M.M. Yung, S.H. Pang, et al. in preparation



Formation of methane occurs at higher temperature than CO2 
desorption, suggesting formation of stable intermediate species
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Reactor bed configuration studies suggest synergy between captured 
CO2 and catalytic Ru site leading to higher conversion

17 M. Rasmussen, S. Halingstad, M.M. Yung, S.H. Pang, et al. in preparation



Milestone 7: Retained >75% performance after extended 
cyclic operation
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Cyclic adsorption/reaction tests 
indicate long-term stability for 
CH4 production and slight 
improvement in CO2 conversion

M. Rasmussen, S. Halingstad, M.M. Yung, S.H. Pang, et al. in preparation



Our project has developed materials and protocols for thermal reactive 
capture, converting CO2 from the air into methane
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Project Impact
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Peer-reviewed publications
• Jue, M. L.; Ellebracht, N. C.; Rasmussen, M. J.; Hunter-Sellars, E.; Marple, M. A. T.; Yung, M. M.; Pang, S. H.* Improving the Direct Air Capture Capacity of Grafted Amines via 

Thermal Treatment. Chem. Comm. 2024, 60, 7077–7080.
• Crawford, J. M.*; Rasmussen, M. J.; McNeary, W. W.; Halingstad, S.; Hayden, S. C.; Dutta, N. S.; Pang, S. H.; Yung, M. M.* High Selectivity Reactive Carbon Capture over Zeolite 

Dual-Functional Materials. ACS Catal. 2024, 14, 8541–8548. Front cover article.
• Freyman, M. C.; Huang, Z.; Ravikumar, D.; Duoss, E. B.; Li, Y.*; Baker, S. E.*; Pang, S. H.*; Schaidle, J. A.* Reactive CO2 Capture: A Path Forward for Process Integration in Carbon 

Management, Joule 2023, 7, 631–651.
• Crawford, J. M.*; Petel, B.; Rasmussen, M. J.; Ludwig, T.; Miller, E. M.; Halingstad, S.; Akhade, S. A.; Pang, S. H.; Yung, M. Influence of Residual Chlorine on Ru/TiO2 Active Sites 

During CO2 Methanation. Appl. Catal. A: General 2023, 663, 119292.
• McNeary, W. W.*; Ellebracht, N. C.; Jue, M. L.; Rasmussen, M. J.; Crawford, J. M.; Yung, M. M.; To, A. T.; Pang, S. H.* Application of Solid-Supported Amines for Thermocatalytic 

Reactive CO2 Capture. Submitted.
• Aui, A.; Goldstein, H.; Ellebracht, N. C.; Li, W.; Pang, S. H.* Comparative Systems Analysis of Reactive CO2 Capture to Synthetic Natural Gas. In preparation.
External presentations
• M. M. Yung, et al. “TiO2-based Dual Functional Materials for Reactive Carbon Capture Methanation.” Presented at the International Congress on Catalysis, Lyon, France, July 2024.
• S. H. Pang, et al. “Durability and Design of Materials for Direct Air CO2 Capture and Conversion.” Presented at Heriot-Watt University, Research Centre for Carbon Solutions, Edinburgh, Scotland, 

June 2024.
• M. M. Yung, et al. “Harnessing renewable electricity to enable the power-to-gas process: Developing a sustainable energy pathway through catalytic methanation of CO2 to produce renewable 

natural gas.” Presented at the Spring 2024 Meeting of the American Chemical Society, New Orleans, LA, March 2024.
• S. Halingstad, et al. “Renewable natural gas production from CO2 methanation for energy storage.” Presented at the Rocky Mountain Catalysis Society Meeting, Albuquerque, NM, March 2024.
• A. Aui, et al. “Techno-economic and Carbon Footprint Analysis of Reactive CO2 Capture to Renewable Natural Gas.” Presented at the 2023 American Institute of Chemical Engineers Annual 

Meeting, Orlando, FL, Nov 7, 2023.
• N. C. Ellebracht, et al. “Direct air reactive capture and conversion: the benefits and limitations of familiar chemistries.” Presented at the Fall 2023 Meeting of the American Chemical Society, San 

Francisco, CA, Aug 13, 2023.
• J. M. Crawford, et al. “Importance of Chlorine Removal from Ru/TiO2 Methanation Catalysts.” Presented at the 28th North American Catalysis Society Meeting, Providence, RI, June 18–23, 2023.
• S. H. Pang, et al. “Direct Air Reactive Capture and Conversion of CO2 to Methane.” Presented at the Gordon Research Conference on Carbon Capture Utilization and Storage, Les Diablerets, 

Switzerland, May 28 – June 2, 2023.
• J. M. Crawford, et al. “Reactive Carbon Capture: Routes to Renewable Natural Gas (RNG).” Presented at the Colorado School of Mines, Chemical & Biological Engineering Seminar, Golden, CO, 

Feb 7, 2023.

Intellectual property
• Provisional patent application (joint between LLNL and NREL) filed.
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Lawrence Livermore National Laboratory
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Tasks, Milestones, and Deliverables 
Budget Period: BP 1 BP 2 

 Project Year: FY 2022 FY 2023 FY 2024 ‘25 

Project Quarter: 1 2 3 4 5 6 7 8 9 10 11 12 13 

Task 0: Project management and planning              
Task 1: Synthesize hybrid adsorbent-catalyst materials              
Task 2: Evaluate adsorption performance with dilute CO2              
Milestone 1: Measured DAC adsorption capacity >0.25 mol CO2/kg              
Task 3: Characterize catalysts and perform methanation with dilute CO2               
Milestone 2: Achieved >25% CO2 single-pass conversion from dilute CO2               
Task 4: Simulate interaction between captured CO2 and single-atom catalyst site               
Milestone 3: Established energetics for conversion of captured CO2 into CH4              
Task 5: Develop preliminary technoeconomic assessment              
Deliverable 1: Report detailing preliminary technoeconomic assessment              
Task 6: Develop preliminary life cycle assessment              
Deliverable 2: Report detailing preliminary life cycle assessment              
Milestone 4: Downselected material composition              
Success Criteria BP1:  Demonstrate 10% improvement in RNG MFSP and CI compared to baseline               
Task 7: Synthesize second-generation materials              
Task 8: Evaluate adsorption performance and material durability with humidity              
Milestone 5: Measured DAC adsorption capacity >0.40 mol CO2/kg              
Task 9: Develop cyclic air capture-methanation process and test performance              
Milestone 6: Converted >50% of captured CO2 into CH4              
Milestone 7: Retained >75% performance after extended cyclic operation              
Task 10: Simulate adsorption and conversion processes with humidity              
Task 11: Refine technoeconomic and life cycle analyses              
Milestone 8: Demonstrated impact of CO2 adsorption capacity and fractional conversion on RNG MFSP              
Deliverable 3: Report documenting refined TEA and LCA for DAC-RCC process               
Success Criteria BP2: Demonstrate 15% improvement in RNG MFSP and/or CI compared to baseline               
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