

Porous Catalytic Polymers for Simultaneous CO₂ Capture and Conversion to Value-Added Chemicals-Formic Acid

Michelle K. Kidder Oak Ridge National Laboratory

ORNL is managed by UT-Battelle LLC for the US Department of Energy

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

Project Objectives

- Advance the TRL (2 to 4) through combined experimental and modeling to enhance the efficiencies while assessing the TEA/LCA of a dual functional catalytic porous polymer for simultaneous capture and conversion of CO₂ to value added chemicals (formic acid)
 - -Establish CO₂-philicity, selectivity, and stability
 - -Scale material 50x
 - -Establish critical performance attributes (CPAs)
 - » batch to bed reactor
 - -TEA/LCA
 - » Offset carbon capture costs from utility/industry» Competitive production
- Funding \$1M/year, 3 years
- 10/1/2021 9/30/2024 ♣OAK RIDGE 8€

Team-ORNL and NETL

3

Open slide master to edit

Desirable properties of our developed material

- Simple/affordable material with process integration (drop in?)
- High surface area and microporosity volume increased contact with active sites
- Stable and recyclable

CAK RIDGE National Laboratory

- Build rigidity into the structure to open porosity and accessibility of active sites
- 3° nitrogen for covalent bound metal active site

Characteristic of Catalytic PIM – SEM/EDS

Open slide master to edit

Physisorption analysis of PIM-MB-TB/Ru13%

N₂ adsorption – Isotherm

6

 N_2 adsorption – NLDFT (PIM)

Physisorption analysis of PIM-SBF-TB

BET surface area PIM-SBF-TB 560 m²/g PIM-SBF-TB-Ru13 410 m²/g N₂ adsorption – NLDFT

 Although some pore volume lost at 14 Angstroms, pores are maintained and have higher volume that PIM-MB-TB when Ruthenium is added

CO₂ Sorption at Temp & Pressure: PIM-MB/Ru-13%

- The CO₂ sorption capacity decreased with increased temperature
- The PIM-MB-TB-RuClx has a lower sorption capacity than the pure PIM-MB-TB (not Ru mass corrected)
- At low pressure, the sorption isotherm is nearly the same for both the pure PIM-MB-TB and the PIM-MB-TB-RuClx

MODEL of PIM-Ru

- Direct comparison of Sips model predicted equilibrium capacity at different temperate as function of pressure
 - Empirical Multi-layer adsorption model combo. Langmuir and Freundlich models

CO₂ Sorption in **PIM-SBF** and **PIM-SBF-Ru13**%

- Only slightly higher capacity at 40 bar/ $\,$
 - PIM-MB-TB (4.5 mmol/g)
 - PIM-MB-TB-Ru13 (3.2 mmol/g)

CO₂ Sorption Kinetics using Volumetric Analysis PIM-MB vs PIM-SBF-(Ru13%)

- Single gas measurement with only CO₂ present. Gas dosed immediately
- The CO₂ is absorbed within approximately 1 min
- The PIM and the PIM-Ru show similar uptake kinetics at 1 bar and 25 $^{\circ}$ C
- The sorption kinetics are similar for MB and SBF PIM samples

CO₂ conversion in batch mode

1H NMR

Formic Acid

Temp TON* CO_2 (bar) (bar) **(C)** Ru-13 wt% Ru-3 wt%

Open slide master to edit

CO₂ Conversion – Pressure changes 40 °C 60 bar-PIM-MB-TB-Ru

Formic Acid Kinetics and Conversion PIM-MB-TB-Ru13

PIM-SBF-Ru13 vs PIM-MB-RU Formic acid performance

30 C, 60 bar total (30:30)

PIM	Temperature (°C)	Total pressure (bar) at 30 C	TON	Catalyst	Temp (C)/P	TON*
MB-TB-Ru13	30	60	1160	Ru-13 wt%	40/60	510
SBF-Ru13	30	60	1289			

14

Formate?

Polymer Catalyst Stability

Before use

Batch to Flow Reactor

Features

CAK RIDGE

- Gas-liquid mixer
- Max Pressure 100 bar
- Liquid-liquid separator
- Recirculation of solvent/gas
- Software control and analysis
- Chemical compatibility with products (formic acid)

Sorption powder vs pellet

Method development on-going

- Pellets 1-3 mm
- $\frac{1}{4}$ " x 125 mm tube; 0.5 g Catalyst
 - 2.5 mm glass bead void volume (back flow prevention)
- 60 bar CO₂:H₂ 1:1; 40 °C; Flow 1 ml/min
- 5% CO₂ conversion
- $25 g_{form}/g_{cat}$ -d

Will geometries of pellets, printing or extruding work best?

- Develop geometry that allows for optimize flow and residence time
- CO₂ Sorption analysis shows pelletizing doesn't affect capacity or rate
- Printing/extruding requires binder development

Process Intensification Concept

Achievement:

- Development of a polymer catalysts that will simultaneously undergo capture and conversion to valuable products, i.e., formic acid.
- Efficient separation of upstream and downstream
- Scaled from batch reactor to flow reactor at 100 fold. ۲

Impact: Represents a revolutionary large-scale process intensification that is efficient on the upstream and downstream chemical processes for CO₂ reduction.

Computational Modeling of CO₂ Capture by PIM-Ru Sorbent

CAK RIDGE National Laboratory

- Significant improvement in the CO₂ capture efficiency compared to 1 atm.
- Further increase in sorbent flow rate is not recommended.
- Further modifications in the reactor geometry/design are needed to sustain the desired 90% CO₂ capture efficiency.

CO₂ Conversion in PIM-Ru: Systems Design & Product Separation

Impact of separation energy demand & availability of clean energy on overall systems performance?

Azeotrope observed at higher system pressure

20

What did we learn and what is next?

- Scaling the polymer and catalyst has been reproducible
 - 1 kg of polymer produced
 - Decent carbon capacities of 4-7 mmol/g CO_2 at 40-54 bar; model validation
 - Batch reactions; <40 °C and >60 bar are current ideal conditions (batch)
 - Reactions complete in 24 h;
 - Pressure too low to continue and/or surface coated with product; packed bed/flow will over come this issue
 - Less catalyst increased TON
 - Selective for CO₂ (upstream); ease of separation (downstream)
 - Pure product
- Initial packed bed testing and simulations show cohesive information
- Market competitive process
- <u>FY24 to finish:</u>
 - Packed bed experiments feed back with models; flow rate and resonance time, pellet and printed catalyst development

