

Integrated Capture and Conversion of CO₂ into Materials (IC³M): Pathways for Producing CO₂-Negative Building Composites

David J. Heldebrant Laboratory Fellow Fellow of the American Chemical Society

PNNL is operated by Battelle for the U.S. Department of Energy

Project Overview

Taking waste and making them economical large volume CO₂ sinks.

36-months

- BP1 09/01/2021-09/30/2022
- BP2 10/1/2022 09/30/2023
- BP3 10/1/2023 09/30/2024
- **DOE: \$2.7M in Federal funds**
- (FY1 \$841K, FY2 \$980K, FY3 \$885K)

Cost Share: \$540K, SoCalGas

Carbon Management

Raul Aranzazu

Aditya Nittala

Yelin Ni

The Vision: CO₂-Negative Building Composites

Composite materials may be economical large volume CO₂ sinks.

- Wood flour (~50 wt.% filler) and HDPE plastic
- USD per year
- Storing 5 wt. % CO_2 in decking could sequester 250,000 tonnes per year (emissions of 54,000 cars)

Goal: Replacing wood fluor with abundant, cheap and highly chemically/UV durable biopolymers. Their use in composites also provides CO₂ emission avoidance.

- Lignin: complex organic polymer that forms structural materials in the support of plants.
- Lignite: combustible sedimentary rock formed from naturally compressed peat.

US Market: 3.55 billion linear board feet, \$2.8 billion

Susceptible to rot and UV damage, 20-year lifespan

Producing Lignin and Lignite Composites

Lignin and lignite are strong, cheap, and chemically durable but they cannot bind well in polymer matrixes without chemical modification.

- Maleic Anhydride Polyethylene (MAPE) is chemically grafted on phenolic hydroxyls .
- Functionalization is susceptible to hydrolysis of C-O-C linkage .

Macromo Mater. Eng. 2017, 302, 1700341

European Polymer Journal 150 (2021) 110389

Producing Lignin and Lignite Composites

Lignin and lignite are strong, cheap, and chemically durable but they cannot bind well in polymer matrixes without chemical modification.

- Maleic Anhydride Polyethylene (MAPE) is chemically grafted on phenolic hydroxyls
- Functionalization is susceptible to hydrolysis of C-O-C linkage

*We add CO₂ to the surface of these particles to act like MAPE while being a CO₂ sink.

Pacific

Northwest

European Polymer Journal 150 (2021) 110389

Pacific Northwest

NATIONAL LABORATORY

Project Schedule: in BP3 10/01/2023 – 09/30/2024.

			ТТ	Т			F	Y 22						F	FY 23							FY 2	•		
	Start	End	1-sep-z1 1-Aug-21	1-Oct-21	1-Nov-21	1-Jan-22 1-Dec-21	1-Mar-22 1-Feb-22	1-Apr-22	1-Jun-22	1-Aug-22 1-Jul-22	1-Sep-22	1-Nov-22 1-Oct-22	1-Jan-23 1-Dec-22	1-Mar-23	1-Apr-23	1-Jun-23 1-May-23	1-Jul-23	1-Sep-23 1-Aug-23	1-Nov-23 1-Oct-23	1-Dec-23	1-Feb-24 1-Jan-24	1-Apr-24 1-Mar-24	1-May-24	1-Jul-24	1-sep-z4 1-Aug-24
Budget Period 1 (8P4)	26 Aug 21	20 Can 2		_					_							гт									_
Taek 1 Project management (BP1 BD2 BD3)	20-Muy-21	1 30-3ep-24	-														╈								
Task 1 Froject management (br 1, br 2, br 3)																				+++	_		+++		-
2.1: Solvent Sereening and everthesin								++	_	\vdash	┼╂		\vdash	+ +	_	\vdash	++			++	+-'	\vdash	++	+-'	+
2.1. Suivent Screening and synthesis				_	+	_		++	_	\vdash	┼╂	_	\vdash	+	_	\vdash	++			++	+-'	\vdash	++	+-'	-
2.2: Solvent Bronsted basicity to deprotonate phenol to form ammonium phenolate species of model compounds 2.3: Determine the effect of temperature on degree of CO ₂ incorporation																	+			++			$\pm \pm$		+
2.4: Speciation and Kinetics of CO ₂ insertion																									
2.5: Determination of suitable lignin for carboxylation based on density of phenolic hydroxyls																									
2.6: Recyclability of Solvents																									
Task 3.0. Manufacturing baseline CO ₂ LIG-polymer composites and characterization																									
3.1: Compatibility between filler speciation and matrix composition																									
3.2: Filler concentration, particle size and carboxylation effect on composite performance																				\square					
Task 4.0 Initial Techno-Economic Projections																									
4.1 Complete initial process performance projections																									
	6	Go-No Go	Deci	sion																					
Budget Period 2 (BP2)	******	30-Sep-2	3														\square								
Task 5.0. Solvent based carboxylation of processed lignin and lignite particles			++		\square															++		\vdash	++		+
5.1: Evaluate various solvents with varied basicity for carboxylation of lignin and lignite					+			++									++			++		\vdash	++	+	+
5.2: Controlling amount of carboxylation on lignin and lignite			++	+	+			++									++			++		\vdash	++	+	+
5.3: Measuring reaction kinetics, rate constants and effect of particle size			++		+															++		\vdash	++	+	+
5.4: Production of 100 g of carboxylated lignin and/or lignite			++		\square		\square	++									++			++			++	++	\neg
Task 6.0. Fabrication and testing of CO ₂ -functionalized lignin and lignite containing composites					\square												\square			++		\square	++		\top
6.1: Manufacturing functionalized lignin and lignite – polymer composites																									
6.2: Performance testing of polymer composites																									
6.3: Down-select formulation for further testing and qualification																									
7.0 Intermediate LCA/ TEA analysis																									
7.1: Preliminary LCA/TEA completed based on assumptions for at least one lignin/lignite candidate to study the feasibility of producing carbon-negative materials	•																								
7.2: High-level screening to identify optimal lignin/lignite sources.			++				\vdash	++												++		\vdash	++	++	
		Go-No Go	Deci	sion		-			-						-										
Budget Period 3 (BP3)	******	30-Sep-24	F		Π												\top								
Task 8.0 Process optimization for solvent reclamation and scale-up			++		\square		\square	++									++								
8.1: Identify process for separation of carboxylated lignin from the solvent					\square			++									++						++		\neg
8.2: Demonstrated solvent recovery of >95 %			++				\vdash	++				+			+		++			++					+
8.3: Production of up to 5 kg quantities of carboxylated lignin and lignite	1		++	\top	$\uparrow \uparrow$			++			╎╏	\top		++			++								
Task 9.0 Assessing composite strength, stability, and flammability			++		+		\vdash	++							-	\vdash	++								
9.1: Qualify composites to show tensile strength and flexural strength	1		++		$\uparrow \uparrow$									++			++								+
9.2: Down select composited that meets internal building code (IBC) requirements for decking applications	1		++		\square		\square							++			++								
Task 10.0 Final techno-economic analysis	1		++		$\uparrow \uparrow$			++			† †	\top		++		\square	++			+-					1
10.1: TEA analysis to confirm the production cost of CO ₂ negative building materials			++		$\uparrow \uparrow$		\square	++			╡┫	+		$\uparrow\uparrow$			++						++		+
10.2: Analysis to determine if the proposed process is CO2-negative	1	1	++		$\uparrow \uparrow$		\square				╡┫	+		++		\vdash	++								
10.3: Market Analysis to access feasibility and impact																	++								
10.4 Data analysis and reporting																									

Northwest

Pacific

Project Major Tasks: BP3

Task 1.0 Project management

Task 8: Process optimization for solvent reclamation* and scale-up

Task 8.1 Identify process for separation of carboxylated lignin from the solvent

Task 8.2: Demonstrated solvent recovery of >95 %*

Task 8.3: Production of up to 5 kg quantities of carboxylated lignin and lignite

Task 9: Assessing composite strength, stability, and flammability

Task 9.1: Qualify composites to show tensile strength and flexural strength Task 9.2: Down select composite that meets internal building code (IBC) requirements for decking applications

Task 10: Final techno-economic analysis

 \checkmark Task 10.1: TEA analysis to confirm the production cost of CO₂ negative building materials

 \checkmark Task 10.2: Analysis to determine if the proposed process is CO₂-negative

Task 10.3: Market Analysis to access feasibility and impact

* CO₂BOLs did not have adequate basicity for carboxylation, therefore we used NaOH for carboxylation. We will optimize conditions for separating carboxylated lignin from reaction mixture at scale.

Step 1: Carboxylation of Fillers > 80 °C

200g batches alkaline lignin and sodium lignosulfate and DEC25, Buelah Zap Lignite, and DEC26, Wyodak Sub-bituminous coal.

Step 2: Quantification of CO₂ loading and kinetics

In-situ FT-IR to determine CO₂ loading, optimal reaction conditions and reaction rate.

- Praying Mantis DRIFTS Cell:
 - Temp ~ 130 °C (vacuum)
 - Pressure ~ 1.5 Mpa (~250 PSI)
- Monitor carboxylate peak growth
- Built calibration standards
- CO₂ content ranges 2- 4.2 wt.%
- *Operando* kinetic measurements

Step 2: Quantification of CO₂ loading and kinetics

NMR confirms production of the desired carboxylic acid.

¹³CO₂ 300 psi, alkaline lignin, 90 °C

*Lignin appears below the baseline since it is natural abundance and 1/10,000th scale

Step 2: Quantification of CO₂ loading and kinetics

NMR confirms production of the desired carboxylic acid.

¹³C-enriched CO₂ at 300 psi, alkaline lignin, 90 °C, *in-situ* acidification.

*Peak retention confirms carboxylic acid and not bicarbonate or carbonate.

Addition of H_2SO_4 under pressure

Step 3: Composite Manufacturing and testing

Injection molding or friction extrusion produces composites with up to 60 and 90 wt.% filler respectively.

Step 3: ShAPE Friction Extrusion Manufacturing

Solid-Phase Processing enables production of composites with 80-90 wt.% filler.

- First-generation machine developed at PNNL .
- Consolidated and extruded continuously without external heating
- Tool design and process conditions are key for • manufacturing

Step 3: ShAPE Friction Extrusion Manufacturing

Solid-Phase Processing enables production of composites with 80-90 wt.% filler.

- First-generation machine developed at PNNL
- Consolidated and extruded continuously without external heating
- Tool design and process conditions are key for manufacturing

Northwest NATIONAL LABORATORY

Pacific

Step 3: ShAPE Friction Extrusion Manufacturing

ShAPE extrude wires, bars, or ribbons for property testing.

extrudate: 'bars'; ShAPE ring;

- A. Reza holding an 80 wt.% filler ShAPE composite
- B. Tooling cavity designed
- for manufacturing composite
- C. Cold-pressed composite feedstock granules in D. ShAPE polymer
- composite bars with no
- surface defects

Step 4: Testing the Composites

Composite flexural strength and modulus meet International Building Code requirements, establishing product viability.

- Flexural strength and modulus of injection molded (IM) and friction extruded (FE) lignin polymer composites
- 50 and 80 wt.% functionalized and unfunctionalized lignin fillers and the corresponding uniform live load
- **Composites with recycled HDPE are currently being tested**

ials	Uniform live load (psf)
(IM)	92.38
g (IM)	109.17
Lig (IM)	70.02
.ig + 5% (IM)	107.59
) (FE)	199.35
Lig (FE)	172.80
.ig + 5% (FE)	214.36
h AZEK	122.20
nscend	249.68

Kappagantula et al. 2024, Submitted.

17

Step 5: Techno-Economic and Life-cycle Analyses

Model and experimental data-based TEA and cradle-to-gate LCA to quantify economic and environmental benefits.

Lignin Case \succ

Pacific

100

Northwest NATIONAL LABORATORY

Kappagantula et al. 2024, Submitted.

18

Step 5: Techno-Economic Projections

Pacific Northwest

Modeling in Aspen Plus using the standard approach.

- > Approach: Wooley and Putsche, Development of an Aspen Plus Physical Property Database for Biofuel components, NREL/TP-425-20685, 1996.
- Properties of Kraft Lignin

Properties Required by Aspen: Solids

Wt%	Mun et al., 2021	NREL Model	Our Model
С	63.12	71.6	66.9
Н	5.67	11.4	5.4
0	28.78	17.0	27.7
Ν	0.48		
S	1.96		

Value Property Aspen Heat of Formation DHSFRM Riley, 1995 Heat Capacity* CPSP01 Density **VSPOLY** 1.5 g/cc

*1.2 kJ/kg/K @25 °C, similar to Pervan, 2014.

> Aspen Plus Specification * A formula corresponds to a single repeat unit.

Component	Formula *	CPSPO1 (K	(, J/kmol-K)	VSPOLY (K, m ³ /kmol)	D
		1	2	1	
Lignin	$C_{6.8}H_{6.6}O_{2.1}$	31431.7	394.427	0.0817	-1
Lignin-ONa	C _{6.8} H _{5.6} O _{2.1} Na	37098.5	465.538	0.0964	-'
Lignin-COONa	C _{7.8} H _{5.6} O _{4.1} Na	48442.9	607.909	0.1259	-2
Lignin-COONa-ONa	$C_{7.8}H_{4.6}O_{4.1}Na_2$	54110.5	679.017	0.1406	-2
Lignin-COOH	$C_{7.8}H_{6.6}O_{4.1}$	42779.8	536.83	0.1112	-'

Domalski et al., 1987

OHSFRM (kJ/mol)

1592.6

1797.6

2170.1

2348.5

1986.8

Kappagantula et al. 2024, Submitted.

Step 5: Techno-Economic Projections

Pacific Northwest

all

Modeling in Aspen Plus using the standard approach.

Kappagantula et al. **2024**, *Submitted*.

20

Step 5: Techno-Economic Projections

TEA and LCA studies run with comprehensive list of operating conditions and performance measures of the carboxylation unit.

	Lignin-HCI	Lignin-H₂SO₄	
NaOH treatment			
Solvent (per g lignin/lignite)	1 ml 1M NaOH	1.5 ml 0.67M NaOH	
Temperature/pressure	Room	Room	
Residence time	3 h	3 h	
Water removal	Vacuum dryer @ 130 °C	Filtration	
Carboxylation			
Temperature/pressure	130 °C, 15 bar	130 °C, 15 bar	
Residence time 3 h		3 h	
Acidification			
Acid (per g lignin/lignite)	1 ml 2M HCl	3 ml 0.67M H ₂ SO ₄	
Temperature/pressure Room		Room	
Residence time	Residence time 5 min		
CO ₂ LIG Recovery			
Wash (per g lignin)	200 ml acetone (5% H_2O)	100 ml ice water	
Separation	Vacuum dryer @ 130 °C	Filtration	
CO ₂ LIG recovery rate	80%	65%	
Waste Stream Treatment	Waste Stream Treatment Acetone recycled; Lignin sent		Qu
	to burner	send to wastewater treatment	sen

Lignite-H₂SO₄

2 ml 1M NaOH Room 1 h Filtration

130 °C, 28 bar 1 h

 $2 \text{ ml } 1\text{M } \text{H}_2\text{SO}_4$ Room 5 min

100 ml 25°C water Filtration 88% ick lime to adjust PH; then d to wastewater treatment

Kappagantula et al. 2024, Submitted.

Step 5: Techno-economic Projections

CO₂LIG fillers can be made cheaper than HDPE (\$1/kg) suggesting economic viability as filler.

- Lignite has comparable price to wood flour filler
- Lignin is more expensive primarily due to feedstock costs
- Price is sensitive to process conditions and reagents, e.g. HCI VS H₂SO₄ acid workup

Kappagantula et al. 2024, Submitted.

Step 5: Preliminary Life Cycle Analysis*

The global warming potential (GWP) of CO₂LIG composites using 100% renewables, recycled HDPE is lower than wood-plastic composites (WPC).

CO₂LIG GWP: Lignite: 63% lower than WPC

Lignin: CO₂-negative

Kappagantula et al. 2024, Submitted.

23

Northwest

Pacific

Step 5: Preliminary Life Cycle Analysis*

Conservative temporal radiative force analysis suggests carbon neutrality after 54 years and carbon negativity in subsequent years.

Carbon storage > 54 years: Net negative global potential

* ShAPETM enables re-extrusion of old composites extending product lifetime.

*100% renewable electricity, recycled HDPE

Kappagantula et al. 2024, Submitted.

Milestones and Success Criteria

Project team has met all success criteria in BP2 and BP3.

		Planned	Ac
No.	Milestone Description	Completion	
M8.1	Complete analysis and process optimization for separation of carboxylated lignin from the solvent	3/31/2024	
M8.2	Demonstrate solvent recovery (>95 %)	6/30/2024	
M8.3	Produce up to 5 kg of carboxylated lignin and lignite	8/31/2024	

BP	Success Criteria	N
BP3	Solvent recovery (>95%) validated by using solvent recovery strategies focused on breaking the carboxylic acid/solvent acid/base pairs on the surface of the particles.*	Mil
	Synthesize 5 kg of carboxylated lignin or lignite using the down selected solvent	Met N
BP3	Complete LCA/TEA analysis confirming the production of carbon-negative materials.	Met N

* CO₂BOLs did not have adequate basicity for carboxylation, therefore we used NaOH for carboxylation.

ctual or Estimated Completion

5/31/2024

_*

07/31/2024

lilestone

lestone 8.2

Milestone 8.3

Ailestone 8.3

Comparing CO₂LIG vs. DAC

CO₂LIG is a potentially profitable CDR approach at a reasonable scale with potential to expand to other markets and materials.

- CO₂ sequestration for decking market in US ~250 thousand metric tons/year
- Equivalent emissions of 54,000 US cars/year ~1.86 M cars globally

	DAC
Reactive CDR?	No
Global Scale	Gtonne
45Q Credit	\$180
Cost	>\$100/to

Adaptable to: fencing, siding, furniture, structural materials

Conclusions

Reactive CDR can produce economically-viable CO₂-negative composites from lignin or lignite and recycled HDPE.

- Lignin and lignite carboxylation at Kg scale with $\sim 2-4.2$ wt. % CO₂
- Shear assisted processing and extrusion (ShAPE[™]) enables:
 - Composites with 50-80 wt.% lignin filler
 - Composites with 80-90 wt.% lignite filler
 - Recycling and re-extrusion of old decking improving product lifetime
- CO₂LIG composites meet IBC metrics for flooring or decking
- Lignite CO₂LIG composites have 63% lower GWP than WPC
- Lignin CO₂LIG composites have a net-negative GWP after 20-54 years assuming:
 - 100% renewable electricity, recycled HDPE
 - CO₂ sequestered in CO₂LIG, and excess CO₂ stored in the ground
- Adaptable to other composite markets to increase CO₂ sequestration potential

Thank you

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352

www.pnnl.gov

Next Steps: Environmental Performance Testing

Pacific Northwest

Testing CO₂LIG-plastic composite for durability and flammability.

Water absorption testing

Lab-scale freeze-thaw testing

ASTM E84 Flammability spread index To determine flammability class (A, B, C) of material

ASTME659

Lab-scale self-ignition and autoignition temperature testing

