

Integrated Capture and Conversion of CO₂ into Materials (IC3M): Pathways for Producing CO₂-Negative Building Composites

David J. Heldebrant

Laboratory Fellow

Fellow of the American Chemical Society

PNNL is operated by Battelle for the U.S. Department of Energy

Project Overview

Taking waste and making them economical large volume CO₂ sinks.

36-months

- **BP1 09/01/2021-09/30/2022**
- **BP2 10/1/2022 - 09/30/2023**
- **BP3 10/1/2023 - 09/30/2024**
- **DOE: \$2.7M in Federal funds**
- **(FY1 \$841K, FY2 \$980K, FY3 \$885K)**

Cost Share: \$540K, SoCalGas

Carbon Management

Yelin Ni

Aditya Nittala

Raul Aranzazu

The Vision: CO₂-Negative Building Composites

Composite materials may be economical large volume CO₂ sinks.

- Wood flour (~50 wt.% filler) and HDPE plastic
- USD per year
- Storing 5 wt. $% CO₂$ in decking could sequester 250,000 tonnes per year (emissions of 54,000 cars)
-

Goal: Replacing wood fluor with abundant, cheap and highly chemically/UV durable **biopolymers. Their use in composites also provides CO₂ emission avoidance.**

- Lignin: complex organic polymer that forms structural materials in the support of plants.
- Lignite: combustible sedimentary rock formed from naturally compressed peat. **Lignity Lignite Lignite Lignite**

US Market: 3.55 billion linear board feet, \$2.8 billion

Susceptible to rot and UV damage, 20-year lifespan

Producing Lignin and Lignite Composites

Lignin and lignite are strong, cheap, and chemically durable but they cannot bind well in polymer matrixes without chemical modification.

- Maleic Anhydride Polyethylene (MAPE) is chemically grafted on phenolic hydroxyls \bullet
- Functionalization is susceptible to hydrolysis of C-O-C linkage \bullet

Macromo@Mater. Eng. 2017, 302, 1700341

European Polymer Journal 150 (2021) 110389

Producing Lignin and Lignite Composites

Lignin and lignite are strong, cheap, and chemically durable but they cannot bind well in polymer matrixes without chemical modification.

- Maleic Anhydride Polyethylene (MAPE) is chemically grafted on phenolic hydroxyls
- Functionalization is susceptible to hydrolysis of C-O-C linkage

*We add CO₂ to the surface of these particles to act like MAPE while being a CO₂ sink.

Pacific

Northwest

European Polymer Journal 150 (2021) 110389

Pacific
Northwest

NATIONAL LABORATORY

7

Project Schedule: in BP3 10/01/2023 – 09/30/2024.

Northwest

Pacific

Task 1.0 Project management

Task 8: Process optimization for solvent reclamation* and scale-up

Task 8.1 Identify process for separation of carboxylated lignin from the solvent

Task 8.2: Demonstrated solvent recovery of >95 %*

◆ Task 8.3: Production of up to 5 kg quantities of carboxylated lignin and lignite

◆ Task 9.1: Qualify composites to show tensile strength and flexural strength Task 9.2: Down select composite that meets internal building code (IBC) requirements for decking applications

Task 9: Assessing composite strength, stability, and flammability

Task 10: Final techno-economic analysis

 \bullet Task 10.1: TEA analysis to confirm the production cost of CO₂ negative building materials

 \blacktriangleright Task 10.2: Analysis to determine if the proposed process is $CO₂$ -negative

Task 10.3: Market Analysis to access feasibility and impact

* CO₂BOLs did not have adequate basicity for carboxylation, therefore we used NaOH for carboxylation. We will optimize conditions for separating carboxylated lignin from reaction mixture at scale.

Project Major Tasks: BP3

Step 1: Carboxylation of Fillers > 80 ˚C

200g batches alkaline lignin and sodium lignosulfate and DEC25, Buelah Zap Lignite, and DEC26, Wyodak Sub-bituminous coal.

Step 2: Quantification of CO₂ loading and kinetics

10

- **Praying Mantis DRIFTS Cell:**
	- \blacksquare Temp ~ 130 °C (vacuum)
	- Pressure \sim 1.5 Mpa (\sim 250 PSI)
- Monitor carboxylate peak growth
- Built calibration standards
- $CO₂$ content ranges 2-4.2 wt.%
- *Operando* kinetic measurements

In-situ FT-IR to determine CO₂ loading, optimal reaction conditions and reaction rate.

Step 2: Quantification of CO₂ loading and kinetics

NMR confirms production of the desired carboxylic acid.

$13CO₂$ 300 psi, alkaline lignin, 90 °C

Fill Rotor with solid and/or liquid

**Lignin appears below the baseline since it is natural abundance and 1/10,000th scale*

Step 2: Quantification of CO₂ loading and kinetics

**Peak retention confirms carboxylic acid and not bicarbonate or carbonate.*

NMR confirms production of the desired carboxylic acid.

¹³C-enriched CO₂ at 300 psi, alkaline lignin, 90 °C, *in-situ* acidification.

Addition of H_2SO_4 under pressure

Step 3: Composite Manufacturing and testing

Injection molding or friction extrusion produces composites with up to 60 and 90 wt.% filler respectively.

Step 3: ShAPE Friction Extrusion Manufacturing

Solid-Phase Processing enables production of composites with 80-90 wt.% filler.

- First-generation machine developed at PNNL \bullet
- Consolidated and extruded continuously without external heating
- Tool design and process conditions are key for \bullet manufacturing

- First-generation machine developed at PNNL
- Consolidated and extruded continuously without external heating
- Tool design and process conditions are key for manufacturing

Step 3: ShAPE Friction Extrusion Manufacturing

Solid-Phase Processing enables production of composites with 80-90 wt.% filler.

Northwest NATIONAL LABORATORY

Pacific

Step 3: ShAPE Friction Extrusion Manufacturing

ShAPE extrude wires, bars, or ribbons for property testing.

extrudate; 'bars': ShAPE ring;

- A. Reza holding an 80 wt.% filler ShAPE composite
	-
- **B.** Tooling cavity designed
- for manufacturing composite
- C. Cold-pressed composite feedstock granules in D. ShAPE polymer composite bars with no
- surface defects

Composite flexural strength and modulus meet International Building Code requirements, establishing product viability.

Step 4: Testing the Composites

- Flexural strength and modulus of injection molded (IM) and friction extruded (FE) lignin polymer composites
- 50 and 80 wt.% functionalized and unfunctionalized lignin fillers and the corresponding uniform live load
- **Composites with recycled HDPE are currently being tested**

18

Model and experimental data-based TEA and cradle-to-gate LCA to quantify economic and environmental benefits.

> Lignin Case **Pulp**

Pacific

Telesian

Northwest NATIONAL LABORATORY

Step 5: Techno-Economic and Life-cycle Analyses

Step 5: Techno-Economic Projections

Pacific Northwest

Modeling in Aspen Plus using the standard approach.

- ▶ Approach: Wooley and Putsche, Development of an Aspen Plus Physical Property Database for Biofuel components, NREL/TP-425-20685, 1996.
- \triangleright Properties of Kraft Lignin

▶ Properties Required by Aspen: Solids

Property Value Aspen **Heat of Formation DHSFRM Riley, 1995** Heat Capacity* CPSPO1 Density **VSPOLY** 1.5 g/cc

*1.2 kJ/kg/K @25 °C, similar to Pervan, 2014.

> Aspen Plus Specification * A formula corresponds to a single repeat unit.

Domalski et al., 1987

DHSFRM (kJ/mol) 1592.6 1797.6 2170.1

2348.5

1986.8

20

Modeling in Aspen Plus using the standard approach.

Step 5: Techno-Economic Projections

Pacific Northwest NATIONAL LABORATORY

 \mathbb{Z}

Step 5: Techno-Economic Projections

TEA and LCA studies run with comprehensive list of operating conditions and performance measures of the carboxylation unit.

$Lignite-H₂SO₄$

130 °C, 28 bar

2 ml 1M H₂SO₄
Room

100 ml 25°C water ick lime to adjust PH; then d to wastewater treatment

22

- Lignite has comparable price to wood flour filler
- Lignin is more expensive primarily due to feedstock costs
- Price is sensitive to process conditions and reagents, e.g. HCI VS H_2SO_4 acid workup

CO2LIG fillers can be made cheaper than HDPE (\$1/kg) suggesting economic viability as filler.

Step 5: Techno-economic Projections

23

Step 5: Preliminary Life Cycle Analysis*

The global warming potential (GWP) of CO₂LIG composites using 100% renewables, recycled HDPE is lower than wood-plastic composites (WPC).

CO₂LIG GWP: Lignite: 63% lower than WPC

Lignin: $CO₂$ -negative

Step 5: Preliminary Life Cycle Analysis*

Conservative temporal radiative force analysis suggests carbon neutrality after 54 years and carbon negativity in subsequent years.

Carbon storage > 54 years: Net negative global potential

Kappagantula et al. **2024**, *Submitted*.

* **ShAPETM enables re-extrusion of old composites extending product lifetime.**

*100% renewable electricity, recycled HDPE 24

Milestones and Success Criteria

Project team has met all success criteria in BP2 and BP3.

Actual or Estimated Completion

07/31/2024

Mestone 8.2

Milestone 8.3

Milestone 8.3

* CO2BOLs did not have adequate basicity for carboxylation, therefore we used NaOH for carboxylation.

Comparing CO2LIG *vs.* **DAC**

- CO₂ sequestration for decking market in US ~250 thousand metric tons/year
- Equivalent emissions of 54,000 US cars/year ~1.86 M cars globally

CO₂LIG is a potentially profitable CDR approach at a reasonable scale *with potential to expand to other markets and materials.*

Adaptable to: fencing, siding, furniture, structural materials

Reactive CDR can produce economically-viable CO₂-negative composites from lignin or lignite and recycled HDPE.

- Lignin and lignite carboxylation at Kg scale with \sim 2-4.2 wt. % CO₂
- Shear assisted processing and extrusion (ShAPETM) enables:
	- Composites with 50-80 wt.% lignin filler
	- Composites with 80-90 wt.% lignite filler
	- Recycling and re-extrusion of old decking improving product lifetime
- $CO₂ LIG$ composites meet IBC metrics for flooring or decking
- Lignite $CO₂ LIG$ composites have 63% lower GWP than WPC
- Lignin CO₂LIG composites have a net-negative GWP after 20-54 years assuming:
	- 100% renewable electricity, recycled HDPE
	- \bullet CO₂ sequestered in CO₂LIG, and excess CO₂ stored in the ground
- Adaptable to other composite markets to increase $CO₂$ sequestration potential

Conclusions

Thank you

www.pnnl.gov

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352

Next Steps: Environmental Performance Testing

Northwest

Testing CO₂LIG-plastic composite for durability and flammability.

Water absorption testing **Lab-scale freeze-thaw testing**

ASTME659 Lab-scale self-ignition and autoignition temperature testing

