A highly efficient microalgae-based carbon sequestration system to reduce CO₂ emission from power plant flue gas

DE-FE0031914

 Yantao Li, Feng Chen, and Russell Hill, University of Maryland Center for Environmental Science;
 Robert Mroz, HY-TEK Bio, LLC;
 Troy Hawkins, Argonne National Laboratory

> U.S. Department of Energy National Energy Technology Laboratory Aug. 11, 2024

Project Overview

- Funding
 - DOE: \$3,000,000 and Cost Share: \$750,000
- Overall Project Performance Dates:
 - Sep. 2020 to Sep. 2023 (NCTE to Dec. 2024)
- Project Participants:
 - Yantao Li, Feng Chen, Russell Hill, University of Maryland Center for Environmental Science;
 - Robert Mroz, HY-TEK Bio, LLC;
 - Troy Hawkins, Argonne National Lab
 - DOE NETL Program Manager: Lei Hong (From Jan. 2022), Kyle Smith (May- Dec. 2021), Katharina Daniels Sep. 2020 to Apr. 2021)

Project Overview

- Overall Project Objectives

The objective of this project is to harness the power of photosynthetic microalgae to maintain a high-pH, high-alkalinity microalgal culture to create a carbon-negative system for carbon dioxide (CO_2) conversion to value-added products from power plant flue gas.

Technology Background

100 g algal biomass produced will use 183 g CO_2 .

Algal biomass for feed/biofuels.

Microalgal Carbon Capture and Biomass Production: <u>Microalgae-driven carbonate precipitation (MadCAP)</u>

$$CO_{2} + H_{2} O \rightleftharpoons H_{2}CO_{3} \rightleftharpoons H^{+} + HCO_{3}^{-} \rightleftharpoons 2H^{+} + CO_{3}^{2-}$$
$$Ca^{2+} + CO_{3}^{2-} \rightleftharpoons CaCO_{3}$$

Adapted from Zhu and Dittrich 2016 Frontiers in Bioeng and Biotech.

Mazzone et al., 2002 MARSci.2002.01.020105; DE-FC26-00NT40934; http://thanhphatchem.com/;

Microbial interactions in non-axenic microalgal cultures

Lin, Li and Hill. Current Opinion in Biotechnology 2021, 73:300–307

Technology Background: Proposed Technology Readiness Level

Technical Approach/Project Scope

Bench-scale development of a saltwater and a freshwater algal system (UMCES)

- Subtask 2.1; 3.1; 4.1: Saltwater algal carbon sequestration system (Li and Hill)
- Subtask 2.2; 3.1; 4.1: Freshwater algal carbon sequestration (Chen and Hill)

Slipstream testing of the algal carbon sequestration system (HY-TEK Bio)

- Subtask 2.3; 3.2; 4.2: Slipstream test on strains IMET1 and HTB1 at 500 L (Mroz)
- Subtask 3.3; 4.3: Slipstream test on algal strains IMET1 and HTB1 at 6,800 L (Mroz)

Development of TEA and LCA models to evaluate and guide (Argonne)

• Subtask 2.4; 3.4; 4.4: Perform TEA and LCA analysis (*Hawkins and Banerjee*)

Milestones

<u>Milestone 4.1</u>: Achieve 3 g/L biomass concentration and extra 50% carbon capture in lab cultures

<u>Milestone 4.2</u>: Achieve 20 g/m²/day biomass productivity and extra 50% carbon capture at 500 L

<u>Milestone 4.3</u>: Achieve 20 g/m²/day biomass productivity and extra 50% carbon capture at 6,800 L

Milestone 4.4: Report on updated findings of the TEA and LCA

We can achieve high biomass yield (> 7g/L) and exceed our goal (Milestone 4.1).

<u>Milestone 4.1</u>: Achieve 3 g/L biomass concentration and extra 50% carbon capture in lab cultures Feng Chen and Chen Lab

HY-TEK Bio's slipstream testing site at the Back River Waste Water Treatment Plant

Current HTB site in operation for more than 8yrs

Robert Mroz and HY-TEK Bio Team

Progress- HY-TEK Bio 500L bioreactors

Milestone 3.2 Achieve 10-15 g/m²/day biomass productivity concentration and extra 20% carbon capture at 500 L. M30

Justin Shaw, Al Dawson, Kent Nicholson, Ed Weinberg, Carolyn Mroz etc. ¹²

Progress- Growth of *N. oceanica* IMET1 in the 500L bioreactor

Yantao Li, Yi-Ying Lee and Li group

Progress- Growth of *N. oceanica* IMET1 in the 500L bioreactor

Yantao Li, Yi-Ying Lee and Li group

Progress- Growth of *N. oceanica* IMET1 in the 500L bioreactor

CO₂ capture equivalent based on AFDW biomass productivity and CaCO3 precipitation

Assumption: To produce 100 g algae, 183 g CO_2 is needed; To produce 100 g $CaCO_3$, 44g CO_2 is needed; Therefore, CO_2 consumption to produce 416 g $CaCO_3$ is equal to that to produce 100 g algae.

Yantao Li, Yi-Ying Lee and Li group 15

Progress- Growth of S. obliquus HTB1 in the 500L bioreactor

Feng Chen, Nick Gallagher, Chen group

Progress- Growth of S. obliquus HTB1 in the 500L bioreactor

Increased pH resulted in the precipitation of CaCO3

Feng Chen, Nick Gallagher, Chen group

Progress- Growth of S. obliquus HTB1 in the 500L bioreactor

CO₂ capture equivalent based on AFDW biomass productivity (Converting CO₂ captured as CaCO₃ into algae productivity)

<u>Milestone 4.2</u>: Achieve 20 g/m²/day biomass productivity and extra 50% carbon capture at 500 L

18

Feng Chen, Nick Gallagher, Chen group

Progress- Lab Microbial Analysis

Identification of Patescibacteria

V3/V4 region of the 16S rRNA gene sequenced on Illumina Miseq Platform and analyzed with qiime2

Bacterial communities of *Nannochloropsis oceanica* bubbled with 10% CO2 at **1 liter scale**.

Microalgal 16S removed bioinformatically.

Russell Hill, Lauren Jonas and Hill Group

0.45 µm fraction (0.22 µm fraction looks similar)

Progress- Lab Microbial Analysis

Identification of Patescibacteria

V3/V4 region of the 16S rRNA gene sequenced on Illumina Miseq Platform and analyzed with qiime2

Bacterial communities of *Nannochloropsis oceanica* grown at HY-TEK **500 L Bioreactor**

Russell Hill, Lauren Jonas and Hill Group

Patescibacteria group bacterium 2103
Patescibacteria group bacterium 2163
Uncultured Alphaproteobacteria *Parvibaculum* sp.
Rhodobacteraceae (family) *Gimesia* sp. *Tagaea* sp. *Cladosiphon okarmuranus*Simkaniaceae (family)

Progress- Lab Microbial Analysis

Identification of Patescibacteria

Metagenomic sequencing on Nanopore GridION platform

Russell Hill, Lauren Jonas and Hill Group

Progress- HY-TEK Bio 6,800L bioreactors

Robert Mroz and HY-TEK Bio Team

Progress- HY-TEK Bio 6,800L bioreactors

Robert Mroz and HY-TEK Bio Team

Approach for LCA/TEA

Screening LCA and TEA of Full System and Focused Analysis of Key Processes

- LCA/TEA analysis has been carried out consulting NETL's LCA guidance
- High temperature at gas boiler facilitates additional electricity generation via
 Organic Rankine Cycle
- Dewatering comprises dissolved air floatation and centrifuging in series
- Other sensitivities studied include different end use such as biochar

Troy Hawkins, Udayan Singh, and Farah Naaz

LCA findings

- Baseline emissions = 68 gCO_2e/MJ (25% reduction below fossil diesel)
- Use of biogenic carbon source (RNG) and CaCO₃ precipitation further reduce net emissions

Milestone 4.4: Report on updated findings of the TEA and LCA

TEA findings

GGE: gallon of gasoline equivalent

Troy Hawkins, Udayan Singh, and Farah Naaz Cost of producing renewable diesel in the baseline configuration are \$16/GGE

 Improved productivity, increased scale (from 500 L to 6800 L) and low-cost electricity brings down these costs to <\$9/GGE

• Costs cannot be directly compared to market price of incumbents due to scale variation

Milestone 4.4: Report on updated findings of the TEA and LCA

Technology Readiness Level at present

Plans for future work- BP3

Milestone Title	Planned Completion date	Actual Comple tion	Verification Method	Comments
		date		
Milestone 4.1: Achieve 3 g/L	Month 45	4/30/2	Oral and	
biomass concentration and extra	(06/30/2024)	024	written	
50% carbon capture in lab cultures			reports	
<i>Milestone 4.2:</i> Achieve 20	Month 42	3/31/2	Oral and	
$g/m^2/day$ biomass productivity and	(03/31/2024)	024	written	
extra 50% carbon capture at 500 L			reports	
Milestone 4.3: Achieve 20	Month 45		Oral and	
g/m ² /day biomass productivity and	(06/30/2024)		written	
extra 50% carbon capture at 6,800			reports	
L				
Milestone 4.4: Report on updated	Month 45	10/31/2	Oral and	
findings of the TEA and LCA	(06/30/2024)	023	written	
			reports	

Summary

- Our freshwater Scenedesmus and seawater Nannochloropsis systems can achieve >30 g/m2/Day AFDW biomass productivity and an extra 37.8-43.9% carbon capture when grown with flue gas containing 5% CO2 at a 500 L scale for over a month (35-82 days).
- Patescibacteria become dominant and stable in lab and 500 L pilot tests.
 Their role in the culture system is currently under investigated.
- There is some delay in setting up new 6,800 L bioreactor tests, and we are now ready to start the growth test.
- Updated LCA/TEA analysis shows our technology is a promising carbon capture route.