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Investigation of Ammonia for Combustion QO
Turbines (IACT) Tl ENERGY

 Goal - develop advanced combustor technology to utilize ammonia as a zero-carbon fuel for
power generation applying an iterative physics, computational, and experimental approach
resulting in a pilot combustor design validated through tests

e Testing Scaled Combustor | |

—Design using updated mechanism/ Methane

validated model _—
—NOX Target: 20 ppm at 15% O, Lower Heating Value (LHV)
—High combustion efficiency et
— Stable flame (no blowoff) -

 Challenges with ammonia . 37cm/s(12ft/s)

Hydrogen § Ammonia

Lower Heating Value (LHV)
Mass: 120 MJ/kg (51,600 BTU/Ib)

Volume: 275 BTU/scf

Lower Heating Value (LHV)
Mass: 18.6MJ/kg (8,000 BTU/Ib)

Volume: 365 BTU/scf
\
Flame Speed (S,)
291 cm/s (9.5 ft/s)

Flame Speed (S,)
7 cm/s (0.23 ft/s)
o . M 1 ‘
— Safety considerations with ammonia NERTEpC )
. ) T . 1950°C (3542°F
—Ammonia ignition and flameholding ( )

—NOx generation

Flame Temperature (T,,)
2110°C (3830°F)

Flame Temperature (T,,)
1800°C (3272°F)

Comparison of fuel characteristics
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JACT Plan & Key Roles
Schedule: 9/2022-1/2026; Funding: $4.2M
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Selection

Current S0A Specs & GT

UCF/GT/GTI

Physics

Combus tion

Operahility

Single Nozzle

Integration

CRAFTech/

Modeling Tool

Scale
GTI / GT

Combus tor
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IACT Project Flow GTI ENERGY

LCRI

UCF

'\
Task12
TMP and gas turhine selection with technical .
specifction for conbuston. system Literature search to understand
1 > . .
Sﬁ::;::t: Define Kinetics Assess combustion system design Define gaps in understanding e S OA a n d I d e nt I fy k n OWl ed g e g a p S
i|‘ Mechanism approaches (RQL, micro-mix, and gaps in current — }_{ ]
Existing NH3 Weaknesses re-burning, etc.) technology demonstration
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Ignition Delay Time [us]

70/30 NH;/H, IDTs
Also Pure Ammonia and 50/50 Mix

Temperature [K]

Temperature [K]

UCF

UNIVERSITY OF
CENTRAL FLORIDA

Temperature [K]
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2000 @® Stoichiometric @® Stoichiometric @ Stoichiometric
® Lean ® Lean { ® Lean }
® Rich ® Rich { ® Rich
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= 1000 A { = 10004 ‘
1000 - o ggg 2 900
900 e & 800
800 [ 700 =
700 > 600 - 700
600 { 3 500 { { 3 o {
() 0O 500
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2 O 400
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300 o { { { 2 300 {
{ { 200 * {
- 5 bar 10 bar| ., 20 bar
0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.78 0.80 0.82 0.84 0.86 0.88 0.80 0.82 0.84 0.86 0.88 0.90
1000/T [1/K] 1000/T [1/K] 1000/T [1/K]

« At 5 bar and 10 bar, ignition order follows rich<lean <stoichiometric. However, at lower
temperatures, all mixtures ignite nearly at same time.
« At 20 bar, lean and rich mixtures ignite slower than stoichiometric mixtures.

* IDT data new and will be utilized to develop a validated ammonia/hydrogen chemical
kinetic model for gas turbine operating conditions
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Absorption x (m”~2/mol)

g oSO

NO Cross Sections &l GTI ENERGY

CENTRAL FLORIDA

For measuring species time histories, individual species absorption needs to be characterized.

Plan to measure NO, NO2, NH; and H,O species time histories during NH;/H, combustion at 5, 10
and 20 bar.

NO absorption characterization results are shown below:

Equation = -0.00251x + 7.455 3.5 - Equation = -0.00199x + 6.304 35 Equation = -0.00124x + 3.931
=== Poly Fit of Absorption -~ === Poly Fit of Absorption === Poly Fit of Absorption
' @® 52um = ~~_ @® 52um @® 52um
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~~~~~~~ E g 25 - ~~~‘~§{ g 2.5
~~ 8 ~~e_ ~
~~~~~ < ~< <
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o c | IT=~a_
(%] %] ~ -
Qo Qo "I‘~-
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T T T T T T . T T T T T T T T 0.0 T T T T T T T T T
1700 1800 1900 2000 2100 2200 1500 1600 1700 1800 1900 2000 2100 2200 1600 1700 1800 1900 2000 2100 2200 2300 2400
Temperature (K) Temperature (K) Temperature (K)

* NO absorption cross-section is found to decrease with increase in temperature.
* NO absorption cross-section is found to decrease with pressure.
» Alinear fit was developed at 5, 10 and 20 bar to fit experimental data.
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Flame speed measurements - Test matrix e,
« Conduct flame speed measurements to acquire
flame speed data at 10 and 20 bar for pure o
ammonia and ammonia/hydrogen blends %
NH3 in e Temp. | Pressures 155 MKS Bar'at/m 2 T
Mixture fuel (%) O, | N, | Ar | He Phi (K) (atm) Laser manometers oxidant - Cas
50 1 1 O 3 : -~ Mixing Mi:ing Cylinder
Tank Tank
; pog
H,-NH, 70 1111013 10 | |
100 1 2 O 1 E Detector g
07-12 | 29 /e
50 2 1 0 3 'I Thermocouple Detector
H,-NH, 70 2 [ 1]0]3 20 ‘. S R I
100 2 | 1]0]3 | . S

1. Oxidant ratio will be determined during experiments to get laminar flame speed.

Kistler Pressure
y Transducer

Spark Plug /

» Utilize shock tube IDTs, speciation and flame speed
experimental data to develop/improve chemical

kinetic model for ammonia/hydrogen blends
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Theoretical Minimum NOx for Ammonia =) QO
Combustion !l 11 ENERGY

A useful benchmark: what is the theoretical minimum possible NOx emission from ammonia

combustion?
— Not simulating a specific combustor, but rather what is possible with technology development

Tech

» Reactor network modeling -
: . . —— 1.0bar
(kinetic model from Mei et al. — sobar |
201 9 —— 10.0bar
) 107 - —— 15.0bar o m |
E* —— 20.0bar Pﬁﬁ? hll(?!gnih‘;)ge -
§ Air _/ 7
* Acceptable NO, (O(10) ppm) : . | .
possible =
— Rich front end, relaxation & N /p;;e} - s e L s
zone, lean zone ® 100 1T I
—i.e.,, more than just RQL Chemical equilibrium
: quitibriu Schematic of staged combustor
10° reactor network model

0.6 0.8 1.0 12 14 16
Equivalence Ratio

Gubbi, S., Cole, R., Emerson, B., Noble, D., Steele, R., Sun, W., & Lieuwen, T. (2023). Air Quality Implications of Using
Ammonia as a Renewable Fuel: How Low Can NO x Emissions Go?. ACS Energy Letters, 8, 4421-4426.
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Optimized NO Emissions

* "Unrelaxed” NO dominates, manage by:
— Increasing pressure (reduces equilibrium NO, increases relaxation rates)
— Increasing temperature (increasing relaxation rates)
— Increasing residence time
« Sensitivities are flipped for current DLN technologies!
» Theoretically, it is possible to be EPA compliant without SCR for ammonia combustion

Pressure and residence time dependence of NOx emission breakdown

400 400
NO Contribution 3350 NO Contribution 3350
350 . Nomain, eq 350+ . Nomain, eq
. 41300
NN Nomain, unrelaxed 300 NN Nomain, unrelaxed
300F Nosccond 300r Nosccond
4250 & 1250 &
S =
250 S 250 | S
. ) < 10-
:i _200§ :ﬁ Slngle stage ( 10 ) _200§
o2 Single-stage (x 10™) = < 2007 )
z 150 E.. z 1150 E.
150 & 150} =
@) =)
Z z
100 100 Look 100
50 50 sok \- 1450
"o 10 T 03 10 15 20 250
Pressure (bar) Tglobal (IS)
Minimum NO at various combustor pressures (T, = 1900 K, Tyqp, = 20 ms) Minimum NO at various global residence times (T,;, = 1900 K, P =20 bar)
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Hencken Burner Test Setup

* Investigation of NH,/NH ¢— | J
laser-induced fluorescence . tensifiod CMOS
(LIF) ' 'NHZ
—Pure ammonia-air cases, O, AR =
enriched air (50% O,/50% __ﬁgﬁ# e Flamdy —
N,) to help stabilize flame Periscope -
—Models seem to predict NH, / iNH
trend vs ER well intensified GMOS
—NH trend vs ER is noticeably
different
—Work in progress
New CAIl Gas Analyzer
commissioned and will
measure NO, NO, N,O, and
NH; at various equivalence
ratios

Ammonia flame

Water cooled Sample Line
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Staging Tests L=zl 6T ENERGY

Atmospheric/Pressurized Tests Gegrgia | QO

* Design for atmospheric and pressurized
ammonia testing is complete

— Tests will share the burner

 Experiments will investigate flame
stability, blow-off, and emissions

—Various swirl configurations

« Atmospheric tests will characterize the
emissions profiles in the primary zone at
various residence times

—Investigate the NO relaxation vs.
theoretical minimum NOx calculations

Atmospheric burner
design

Pressurized burner design
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Atmospheric/Pressurized Tests
Staging Tests

 Burner manufactured, passed
safety review, shakedown, and
first fire

* Planning atmospheric and 6
bar tests

Modular Swirler Burner (Swirl
numbers 1.1, 0.7, 0.4)
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Scaled Combustor Test Planning

Traversing
Probe I
(20 in)

20 bar experiments
planned for 2024

Post-
Flame
Region
(10 - 50
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Modeling Upgrades for Turbulent
Premixed Flames

* CRAFT Tech completed code development related to

Thickened Flame Model (TFM) implementation in CRUNCH
CFD

 TFM: Well-established turbulent combustion model for

application to premixed flows using finite-rate chemistry

—"Flame front” artificially thickened to be properly resolved
locally on computational grid

— Effects of turbulent flame interactions and flame stretch
included by modifying flame speed of thickened flame
front

Initial TFM evaluation complete (operation/robustness):

—2-D Laminar freely-propagating flame

—2-D Tohoku University/AIST configuration

Application to GA Tech test configuration in progress

Leveraging on MTS-FPV tabulated chemistry capabilities to

reduce computation cost and turn-around time of
simulations

@CRA FT Tech &

GTlI ENERGY

2-D Laminar Flame

—~Cantera
—CRUNCH CFD

2.7 3.2 3.7 4.2 4.7
X [ecm]

Tohoku University/AIST Configuration
NO

2500

Temperature [K]
= = [N}
8 & 8
o o o

wu
Q
o

o

‘ Faster flame
- i speed,
Without SRWAERRN ifferent
TFM ’ TFM

Without

recirculation

i Xsp_NO

2.149e+03 9.474e-03
1.737e+03 7.106e-03
1.324e+03 . A 4.737e-03

9.122e+02 2.369e-03
5.000e+02 2.063e-15

Strong effects of kinetics and turbulence
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Modeling of GA Tech Test Configuration

« Completed calculation setup on HPC
systems:
—Leveraged on periodicity: 45
degree wedge (one vane)
—Used placeholder chemistry model

* Established computationally
efficient procedure for steady-state KCEMIECINEOLY

solution:

— Non-reacting swirl flowfield with == lSMPerature
FPV approach -
—Ignition in combustor via FPV table .
lookup (detailed species mapping

and temperature field initialization)
—Reacting flowfield with TFM

approach
* Next: Test planning calculations

NO Mole Fraction

Velocity vectors

Swirl number of 1.1

* Stoichiometric NH;-air
mixture (premixed) at 1
atm pressure
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Summary/Next Steps GTI ENERGY

« Selected for 41 month, $4.2M project to advance NH3 combustion technology
—Ammonia is an alternative low-carbon energy carrier
« Completed detailed Literature Review and analyses indicating a preferred path forward

« Ammonia combustion physics testing is ongoing (UCF) over a range of relevant gas turbine
conditions to fill in high pressure data

« Hencken Burner and staged fuel tests ongoing (GTRC)
* Initial CFD model updates ongoing and analysis of configurations ongoing
« Ongoing preparations for higher pressure Scaled Combustor tests at GTRC

* Thanks to DOE NETL for supporting this work

% ELECTRIC POWER gﬁ
EPE' RESEARCH INSTITUTE UCF

GTlI ENERGY
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