STEP DEMO BALAN \odot NATIONAL ENERGY LABORATORY GTI ENERGY E BE SwRI

sCO2, Ammonia and Hydrogen – Advanced Turbine System Technologies at GTI Energy

W. Follett Program Director – SCO2 Technologies UTSR Keynote 11/2/2023 GTI ENERGY solutions that transform

Agenda

- Introduction
- Membrane reactor
- Ammonia combustion
- Supercritical CO2 STEP power plant status
- Summary

Carbon Management & Conversion Technology Areas GTI ENERGY

Advanced Turbine System Technologies

- Developing 3 technologies focused on clean energy production
 - -Clean ammonia and hydrogen production and transport
 - Clean ammonia as H₂ carrier for efficient transport and storage
 - Membrane reactor technology development for high purity H_2 separation
 - Turbine combustor technology that utilizes ammonia as a zero-carbon fuel
 - Supercritical CO2 (sCO2) power generation effectively utilizes low- or zero-emissions heat sources
 - Concentrated solar, nuclear, fossil/bio with carbon capture, waste heat, energy storage

Membrane reactor

Ammonia combustor

sCO2 power generation

Agenda

- Introduction
- Membrane reactor
- Ammonia combustion
- Supercritical CO2 STEP power plant status
- Summary

Hollow fiber membrane reactor: High purity H₂ from green ammonia

NH₃ storage and transport

- 2,750 kg equivalent H₂ on truck
- 620 kg equivalent H₂ in nurse tank
- 18 bar operation pressure
- 1 station fill per WEEK

Gaseous H₂ storage and transport

- 350 kg H₂ (entire truck)
- 160 bar operation pressure
- >1 station swap tube trailer per DAY

Vision of ammonia as a hydrogen carrier for ease of transport and storage

Our technology: Hollow fiber membrane reactor at <450°C for high purity H₂ from NH₃ decomposition

The Technology

- Novel, self-sustained membrane reactor design
- Highly active, lower cost, promoted Ru-based bimetallic catalyst enables high conversion at <450°C
- H₂ selective membrane separates NH₃ decomposition stream to generate high purity H₂

Representative Results

	Goal	Achieved
Energy efficiency	>80%	87%
H ₂ high purity	>99%	>99.9%
NH ₃ conversion	>99%	>99.5%
Product NH ₃ concentration	<100 ppb	<10 ppb

Technology development path

8

Agenda

- Introduction
- Membrane reactor
- Ammonia combustion
- Supercritical CO2 STEP power plant status
- Summary

Investigation of Ammonia for Combustion Turbines (IACT)

• Goal - develop advanced combustor technology to utilize ammonia as a zero-carbon fuel for power generation applying an iterative physics, computational, and experimental approach resulting in a pilot combustor design validated through tests

CENTRAL FLORIDA

- Ultimately testing Scaled Combustor
 - Design using updated mechanism/ validated model
 - -NOX Target: 20 ppm at 15% O₂
 - -High combustion efficiency
 - -Stable flame (no blowoff)
- Challenges with ammonia
 - -Safety considerations with ammonia
 - -Ammonia ignition and flameholding
 - NOx generation

IACT Plan & Key Roles Schedule: 9/2022-1/2026

Agenda

- Introduction
- Membrane reactor
- Ammonia combustion
- Supercritical CO2 STEP power plant status
- Summary

Supercritical Transformational Electric Power (STEP) Project

Scope: Design, construct, commission, and operate a **10 MWe sCO₂ Pilot Plant Test Facility** - reconfigurable to accommodate other testing

Team: GTI Energy (GTI ENERGY) Southwest Research Institute (SwRI®) General Electric Global Research (GE-GR) U.S. Department of Energy (DOE NETL)

Joint Industrial Partners:

Schedule: Three budget phases (2016-2025)

Cost: \$165.6MM Total / \$124.5MM Federal Funding (includes building)

U.S. DEPARTMENT OF ENERGY IECHNOLOGY LABORATORY CTI ENERGY CTI ENERGY

Why is it Important? sCO₂ Power Cycles Offer:

Efficient, Compact, Scalable, low water, low-carbon power generation

- Smaller "footprint" and lower construction costs
- Net plant efficiency improvement
- Reduction in LCOE (Levelized Cost of Electricity \$/kWhr)
- Reduced fuel and water usage
- Reduced emissions

emissions.

water use

power plant

efficiency

Compact:

small size

turbomachinery

time

Zero emissions Versatile tech configurations with ma

Versatile technology with many applications Greater cycle efficiency than steam Rankine cycle at high turbine inlet temperatures

Versatile Technology – Broad Applicability

Concentrated Solar

Fossil Fuel/Biomass

Geothermal

Nuclear

Energy Storage

Waste Heat Recovery

Notable Achievements

- Built the world's largest indirect-fired sCO2 power plant at 10 MWe
- Achieved Mechanical Completion for the Simple Cycle Configuration
- Successfully demonstrated the compressor loop (Cooling tower, compressor, main process cooler, Inventory Management System)

Mechanical Completion Ribbon Cutting October 26, 2023

18

?

Is STEP rocket science?

Category	HPOTP (Rocket)	STEP	Verdict	
Speed	28,000			
Power	23,260 hp			
Size	24 x 35 inches			
Weight	Not found			
Lifespan	Hours			

HPOTP = *High pressure oxidizer turbopump*

ChatGTP: STEP is NOT rocket science

More Notable Achievements

sCO2 turbine

- At ~1/10 the size of an equivalent steam turbine, has the world's highest power density for a terrestrial turbine
- 21,500 horsepower produced by 180 lb rotor (120 HP/lb, or 200 kW/kg)

High temperature recuperator (HTR)

- World's largest high temperature printed circuit heat exchanger (PCHE)
- 50 MWth and ~50 tons (~45,300 kg)

Heater

- World's largest high temperature Inconel heater tube bundle
- 93 MWth

Turbine stop valve

- World's largest high temperature Haynes 282 casting
- 9,250 lbs (4196 kg)

STEP Turbine

STEP Demo Turbine

- Objective: Advance Turbine from TRL 6 (Engineering Prototype) to TRL 7 (Full Scale Prototype)
- 16 MW gross power, 3 stages
- Fabricated barrel style casing
- Highest terrestrial power density at 200 kW/kg (120 hp/lb)

Lessons Learned

- Thermal management key to health of dry gas seals
 - Delivery of warm seal gas required at all times while pressurized
- Single piece rotor/blades required due to high power but had long lead time.
 - Individual blades possible at larger scales.
 - Will seek alternate vendors to reduce lead time.
- Casing modes are in operating speed range. Placed at low speeds to minimize excitation.

GTI ENERGY

Compressor

• Status

- Compressor is mechanically complete
- The compressor loop was successfully commissioned (including the cooling tower, sCO2 inventory management system and main process cooler)
- Compressor was run at Simple Cycle and RCBC speeds

• Lessons Learned

- Identified gaps in knowledge and performance for commercial sCO2 compressors
 - Compressor map performance was significantly different than predicted, resulting in reduction in turndown capability
- Liquid operation is an important compressor requirement to support cold start capability
- Compressor efficiency is challenging to calculate accurately at some conditions due to low delta T across the compressor. Installed torque meter and density meter to improve accuracy.

Summary

- GTI Energy is pursuing a vision of ammonia as a hydrogen carrier due to ease of transport and storage
 - The membrane reactor supports this vision by providing high purity H_2 for use in hydrogen turbine applications
 - Development of ammonia combustor that can make use of ammonia directly for turbine applications
- STEP is the largest indirect-fired sCO2 facility in the world, and just achieved mechanical completion
 - It has significantly advanced high temperature material manufacturing capabilities
 - 740H heater tubes and piping
 - Haynes 282 for turbine stop valve
 - Largest high temperature PCHE using stainless steel
 - World's highest power density turbine at 120 hp/lb

STEP is BETTER than rocket science

GTI ENERGY

solutions that transform

GTI Energy develops innovative solutions that transform lives, economies, and the environment

www.gti.energy

Steady State Modeling Summary

Simple Cycle Modeling

RCBC Cycle Modeling

Cycle Results Table

- Status
 - Models are complete and being actively used
 - Components models are based on vendor datasheets and operational constraints
 - Ongoing work: Test data is being used to update and validate the models as it becomes available
- Lessons learned
 - System analysis of 2021 compressor maps led to shifting Simple Cycle operations from 27k rpm to 21k rpm to maintain system performance
 - 2023 test data is currently being used to evaluate impact of actual compressor performance on system performance
 - 27k rpm shows minor improvement in system performance at Simple Cycle conditions. Other operating points under investigation.

Dynamic Model Summary

• Status

- The dynamic model, using Flownex SE, is operational and used for:
 - Simulated Startup, Shutdown, Load Level Changes, and Emergency Shutdowns
 - HAZOP action items were simulated and reviewed to ensure no hardware limits were exceeded: Completed L1, L2 and L3 trip scenarios

• Lessons Learned

- Startup: IMS Control used to manage peak flow, pressure while optimizing bypass cooler requirements
- Shutdown: Shutdown Sequence tailored to keep HTR temperatures within limits and maintain stable compressor operation

• Future Work

- The model will be updated as test data becomes available
 - Startup sequence will be validated with improved compressor maps
- The Digital Simulator utilizes the dynamic model, and will be used to train individuals on how to operate the system without risk to the operators and facility

26

Evaluation on the rapidity of sCO2 cycle power up and down events using the STEP dynamic simulation model

- Study done on non-STEP funding evaluated STEP ramp rate capabilities
- Explored the ability of the sCO2 cycle to closely follow rapid startup & shutdown of a large-scale heat source
- sCO2 system shutdown and startups can take less than five minutes paced by the inertia of the rotating equipment
- Thermal transients at components were found to be acceptable
- Showed how the STEP dynamic simulation model is a valuable tool for powerplant design & evaluations

Heater

Status

- Heater is mechanically complete
- Burnout completed with multiple light-offs and 4 hours of continuous operation
- SCR emissions control system installed and ready for commissioning and ammonia system tuning during full fire operation

Lessons Learned

- How to better weld 740H material and minimize weld cracks after post-weld heat treat
 - Use of phased array ultrasonic testing to inspect all tubes
 - Fabrication/NDE knowledge is transferrable to commercial applications
- Used air instead of CO2 for heater burnout to accelerate schedule, but also provided safer work environment (no CO2)

Cooling Tower and Heat Exchangers

• Status

- Cooling tower and main process cooler are operational and used to support compressor loop operation
- High temperature recuperator (HTR) is installed
- Low temperature recuperator was installed to support piping installation. It was then removed and set aside for future use in RCBC testing.

• HTR lessons learned

- For sCO2 cycles, PCHE are more cost effective and compact than traditional shell and tube heat exchangers
- For commercial scale plants, it may be better to incorporate multiple HTRs in parallel rather than scaling up the existing design
- The ability of the HTR frame and anchors to resist tipping loads due to piping thermal growth should be addressed early in the design process

STEP Facility Piping

• Status

- Piping is complete, including insulation
- Largely P91 and Inconel 740H
- Believed to be largest installation of 740H in the world

• Lessons Learned

- 740H was challenging to procure and install due to limited supply, material hardness and rigorous welding procedures required
 - Industry welding capabilities improved during the project with nearly 100% weld success in final 740H pipe installation
 - Skilled machinist with Inconel 740h experience and the use of carbide inserts improved bevel speed and quality
- Caesar was a valuable tool to develop approaches for thermal growth mitigation and pipe support design

