

Fossil Energy and Carbon Management

FECM efforts to Decarbonize the Energy Sector

UTSR Annual Program Review, Penn State University

October 30, 2023

Completed Power Plant FEED Studies

fecm.energy.gov

Industrial Decarbonization FEEDs & CarbonSAFE

Seven Regional Hydrogen Hubs Selected

Bipartisan Infrastructure Law

- Two Hubs in regions with large natural gas resources.
 - Gulf Coast, Appalachian
- Four Hubs with large Carbon Management Component
 - Gulf Coast, Appalachian, Midwest, Heartland

SELECTED REGIONAL CLEAN HYDROGEN HUBS

Current OCED Power CCS Demo Awards

	Sector	Fuel	Host Site	Capacity	CO2 Technology
Duke Energy Indiana, LLC	Electricity Generation	Coal/NG	Duke Energy Edwardsport	3.6 MTA CO2	Honeywell, UOP
Entergy Services, LLC	Electricity Generation	NG	Lake Charles Power Station	2.5 MTA CO2	MHI, KS-21
Navajo Transitional Energy Company, LLC (NTEC)	Electricity Generation	Coal	Four Corners Power Plant (FCPP)	10+ MTA CO2	MHI, KS-21
Taft Carbon Capture, LLC	СНР	NG	Taft cogeneration power plant	3 MTA CO2	Post combustion capture, solvent
Tampa Electric Company	Electricity Generation	NG	Polk Power Station in Mulberry, Florida	3.7 MTA CO2	ION, post combustion capture
University of Illinois at Urbana-Champaign	Electricity Generation	Coal	Dallman 4, PC coal power plant at City Water, Light and Power in Springfield, Illinois	2 MTA CO2	Linde-BASF

Pre-Commercial – H₂ FEEDs

FEED Studies on Existing Energy Assets

Electric Power Research Institute, Inc. (Palo Alto, CA)

Gasification of Coal and Biomass: The Route to Net-Negative-Carbon Power and Hydrogen

Integrated design study on an oxygen-blown gasification system coupled with water-gas shift, precombustion CO₂ capture, and pressure-swing adsorption working off a waste coal/biomass mix to yield high-purity hydrogen and a fuel off-gas that can generate power.

- Nebraska Public Power District Sheldon Station coal fired plant
- CO₂ Storage: enhanced oil recovery and saline sequestration
- Co-feed corn stover, possibly other biomass and waste plastics

Wabash Valley Resources, LLC (West Terre Haute, IN)

Wabash Hydrogen Negative Emissions Technology

Complete system integrated design study for redeveloping the existing Wabash Valley Resources coal gasification site in West Terre Haute, Indiana, into a 21st century power plant for flexible fuel gasification-based carbon-negative power and carbon-free hydrogen co-production.

- Facility: Wabash Gasification Facility
- CO₂ Storage: Saline sequestration
- Co-feed woody biomass and/or agricultural residue and waste plastics

Financing to Enable Deployment at Scale

Loan Programs Office (LPO) has \$40 Billion in Available Debt Capital

LPO announced loan guarantee conditional commitments for 2 clean hydrogen projects

\$1.04B for the first-ever commercial-scale project to deploy methane pyrolysis technology. Will enable 1,000 construction jobs and 75 operations jobs. (December 2021)

\$504.4M for large-scale hydrogen energy storage,
220 MW electrolysis and turbine. Will enable up to
400 construction jobs and 25 operations jobs.
(April 2022)

LPO@hq.doe.gov

Previous Industry Advanced Turbine Awards

FY 22 Industry Awards (\$28 M) – Hydrogen Combustion Focus

- Develop combustion modules for Fclass, aeroderivative and industrial scale turbines
- Develop retrofit technologies
- Apply to 100% hydrogen & natural gas / hydrogen blends
- Assess ammonia fuels
- Advance application of rotating detonation combustion systems for power generation
- Advance hydrogen combustor technology to next stage of testing & demonstration

Performer	Title	Total Funding (SM)
Solar Turbines	Development of a Retrofittable Dry Low Emissions Industrial Gas Turbine Combustion System for 100% Hydrogen and Natural Gas Blends	5.6
GTI	Investigation of Ammonia Combustion for Turbines (IACT)	4.1
General Electric Company	Advanced Mixed Mode Combustors for Hydrogen F-Class Retrofit	15.0
GE Research	Demonstration of a Gas Turbine-Scale RDC Integrated with Compressor and Turbine Components at 7FA Cycle Conditions	8.7
Raytheon Technologies	Development of Hydrogen Burner for FT4000 Aeroderivative Engine	6.0
Raytheon Technologies	Low-NOx, Operable Ammonia Combustor Development for Zero- Carbon Power (LOAD-Z)	4.2

Previous UTSR Advanced Turbine Awards

FY 21 UTSR Awards (\$6.2 M) – Hydrogen Combustion Focus

- Hydrogen Combustion Fundamentals for Gas Turbines
 - Georgia Tech Research Corporation
 - The University of Central Florida
 - San Diego State University
- Hydrogen Combustion Applications for Gas Turbines
 - Purdue University
 - The Ohio State University
 - University of California, Irvine
- Hydrogen-Air RDE
 - The University of Alabama
 - Purdue University

What will be done:

- Explore chemical kinetics
- Investigate NOx & flame strain rate
- Investigate ignition delay times
- Measure flame speed
- Evaluate existing fuel injectors
- Flame structure and combustion dynamics for H₂ & NH₃ fuels
- Assess RDE combustion modes
- Develop design rules for micromixer injectors
- Develop CFD design tools

Thank You!

Bob Schrecengost <u>robert.schrecengost@hq.doe.gov</u> Director, Division of Hydrogen with Carbon Management

