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Enabling ceramic matrix composites (CMCs) for combustion 
environments requires protective environmental barrier coatings 
(EBCs)

• CMC components entered commercial 
service in 2016 (GE/Safran LEAP engine)

‒ 1/3rd the density of traditional superalloys

‒ High-temperature stability + strength

‒ SiC recesses in steam environments

• Interest in CMCs as hot section components 
for land-based turbines

– H2 / H2 blend fired IGTs to replace natural gas for 
green power production

– Turbine efficiency increase likely needed to offset      
H2 (g) costs

– Increased temperatures and steam production 

IPM Research Group Website.

Siemens AG
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Foundation: Environmental Barrier Coatings (EBCs) 
needed to protect SiC in combustion environments

SiC

Silicon Bond Coating

1. SiC oxidizes in air/steam environments
• SiC + 2O2 (g) = SiO2 + CO2 (g)

2. SiO2 volatilizes in steam environments
• SiO2 + 2H2O (g) = Si(OH)4 (g)

Oxidation must be minimized for long lifetimes (1)

EBCs required to prevent volatilization (2)

SiC/SiC shroud with EBC 
General Electric, DOE’s 

Continuous Fiber Ceramic 
Composite (CFCC) program

*Yb2Si2O7

(YbDS) 
EBCs are 
research 
standard
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EBC failure modes need to be better understood for long 
term IGT application

• Steam reaction: Si-based ceramics 
volatilize in steam

• Bond Coat Oxidation: Weakens 
interface, promotes delamination

• Thermal Stability: Phase/property 
changes during operation

• Thermal Expansion Mismatch

• CMAS: Infiltration of molten particulate 
ingested into engine

• Foreign Object Damage Tejero-Martin et al., J. Eur. Cer. Soc. (2021).
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Themes for ORNL EBC Lifetime Model Development

1. Perform cyclic steam oxidation tests to measure oxidation 
kinetics

– Baseline EBC (Yb2Si2O7) and initiation of modified EBC chemistries

– EBC/CMC systems without the Si bond coating

2. Finite element model to guide understanding of failure modes

– Thermal expansion coefficients measured for implementation

– SiO2 phase change included in simplified model

3. Use advanced characterization tools to identify leading 
cause for coating failure

– SiO2 phase transformation and growth rate
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Capabilities: Focus on cyclic steam furnaces
1-h cycles: automated cyclic rigs

Air + 90%H2O, 10 min cool in lab. air

lid

furnace

2005 cyclic rig: 
1350°C maximum 

2019 cyclic rig:
1500°C maximum 

• 1-h or 100-h thermal cycling

• SiC or Al2O3 labware

• 1.5 cm/s or 10 cm/s

– TGO growth underneath EBC 
not strongly dependent on 
gas flow rate above EBC
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Methodology for assessing EBC performance is based 
on bare SiC/Si oxidation in air and steam

Kane, et al. J. Amer. Ceram. Soc. 105 (2022) 590

Experiments performed in SiC reaction tube

- Based on Harder (NASA)
- Defines upper and lower 

bounds for EBC performance

wet

dry

Silica in steam: EBCs to prevent evaporation – Si(OH)4

AND reduce scale growth rate
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CVD SiC 20 µm

Silicon

YbDS/YbMS

Methodology & Software developed for assessing EBC performance is 
based on bare SiC/Si oxidation in air and steam

20 µm

TGO

1000h Exposure
1350°C, 90% H2O (g)

Parabolic oxidation kinetics

CVD 
SiC

Silicon

Starting Material
(Stony Brook University)

TGO

ORNL open-source code developed for SiO2 growth
https://github.com/TriplePointCat/SOFIA-CV

High statistics: thousands of measurements over mm’s of cross-section
Su Y.-F., et al. OnePetro. (2021).
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Big Picture: Develop Lifetime Model for Industrial Gas Turbine EBCs

• Kinetics: Use intermediate 
timescale kinetic data to estimate 
maximum operating temperature 
for achieving 25k hours of service 
time

• 1350°C, up to 1000h test data

• Thermodynamics: Temperature 
dependence for Si oxidation

• Model validates test data at other 
temperatures (ex. 1250°C)

1250°C
5.3 µm

Exposure Time Model Predicted (µm) Measured (µm)

100 2.2 2.7

300 3.6 3.9

500 5.0 5.3

Rate 0.051 µm2/h 0.052 µm2/h
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Big Picture: Develop Lifetime Model for Industrial Gas Turbine EBCs

• Predictive quality can be 
improved with further testing

• Does not incorporate 
microstructure or pressure effects

• Is there a critical TGO thickness for 
EBC failure?

• 30 µm TGO, max temp: 1170°C

• 40 µm TGO, max temp: 1334°C

• Likely governed by system 
stresses, cracking, bond 
strength, microstructure 
evolution

Improvements needed for lifetime model (2024 – 2026)
1. How do dopants impact oxidation resistance?

2. What is the critical SiO2 thickness for EBC failure?
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Initial laboratory studies on modified EBC systems to improve performance

YbDS+D1

100 µm100 µm

Provided by:
NASA Glenn Research Center

Provided by: 
Comm. Partner 2

YbDS+D2 YbDS+D3

Inc. Concentration of Dopants in EBC Dopants in Si

YbDS/YbMS

Dopants (D):
Mullite, 3Al2O3-2SiO2

YAG, Y3Al5O12

Dopant:
Al2O3

Provided by: 
Comm. Partner 1

(Y/Yb)DS

Dopant:
Y2Si2O7

Commercial EBC
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• Why (Y/Yb)?: $16.4/kg Yb2O3, $3.4/kg Y2O3

• Manufactured at different locations, one temperature: further study needed

• Stony Brook Univ. spraying (Y/Yb)DS EBCs with commercial powder (FY24)

Ridley, MJ, et al. JACERS. (2022).
Stack, P, et al. JECERS. (2022).

Commercial (Y/Yb)DS has lower rates than YbDS in both air and steam 
(2021-2022)
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Three doped EBC compositions received through 
collaboration with NASA Glenn Research Center (2023)

Research-grade EBC with dopants: YbDS+D3 EDS Mapping

100 µm

Dopants:
Mullite, 3Al2O3-2SiO2

YAG, Y3Al5O12

Dopants chosen for 
thermochemical 

stability and low O 
diffusivity
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Doped EBCs show improvements at 1250°C, 100h 
exposure , 1-h steam cycling (2023)

25 µm 5 µm

100 µm 100 µm

YbDS (NASA) YbDS+D1 (NASA)

100 µm

25 µm

YbDS/YbMS (Stony Brook)
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NASA doped EBCs show similar TGO thicknesses after 500h at 1350°C (2023)

100 µm100 µm

YbDS+D1 YbDS+D2 YbDS+D3

• Similar global TGO thicknesses

• 14,000-21,000 measurements over ~3.5 
mm cross-sections

• Abnormal TGO growth greatest for 
YbDS+D1 for 100, 300, 500h exposures

• Higher dopant concentration slightly 
decreases median TGO thickness

https://github.com/TriplePointCat/SOFIA-CV



17

M. Lance et. al, JACerS (2023).

Causes for EBC delamination 
addressed in simple FEM

SiC

EBC

SiC

EBC

Silicon

EBC

SiC
SiC

EBC

Model 3 (ORNL Si-free Trial Architecture)

Model 2 (Research Standard EBC System)

Model 1 (Theoretical)

• Cooling from 1350°C to RT

• SiO2 phase transformation at 250°C

• 5% vol. change

• Temperature dependent CTE and 
Young’s Modulus included for all layers

EBC

CVD SiC

EBC

Cristobalite 
properties 

vary 
greatly
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“Defect-free” 2D FEM initial results for each model (1, 2, 3)

SiO2 TGO Stress on Cooling EBC Stress on Cooling

• Phase transformation dominates 
all system stresses

• Overestimate, due to no pre-
existing cracks in model

• EBC compressive stress increases 
with SiO2 TGO thickness

Now… Can we measure this experimentally?
Aguirre, Lin, Ridley, Pint, ORNL internal review.
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Renishaw Raman Microprobe allows for characterization of 
phase and stress evolution

• Raman Spectroscopy with heating 
stage attachment (600°C)

• 532 nm (green) laser, 50x lens, 2 µm spot 
size

• Peak shifts ∝ f(Temperature, Stress)

• Calibrations performed for Si

M. Lance et. al, JACerS (2023).

Microscope 
Objective

Interaction 
Volume

532 nm 
laser light

10 µm

SiO2

Si
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Visualized cristobalite (SiO2) phase transformation with SEM and 
measured stress with Raman without EBC

SEM Heater Stage 
SiO2 crack closure at phase change

*Specimen tilted 70°

SiO2 TGO on Si

CTE difference & ~5% volume change cause cracking, 
but what happens when EBC is applied?

M. Lance et. al, JACerS (2023).

50 µm
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High-temp. Raman Spectroscopy
300 – 500 MPa increase from phase change

10 µm
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Raman Stress and phase measurements on a full EBC system in 
cross-section at elevated temperatures was attempted

20 µm

Light Optical Image

Yb2Si2O7/Yb2SiO5 EBC

SiO2 TGO

β-SiC (CVD)

Si

• The sample was mounted in epoxy, polished and then 
removed from the epoxy prior to heating from 220 to 290 °C 

1000 h (10-100h cycles) 
at 1350 °C in wet air

ORNL EBC made by 
Stony Brook University



22

Methodology developed for high-temperature Raman in cross-section after 
EBC exposure to cyclic steam

260°C, α-cristobalite TGO 270°C, β-cristobalite TGO

20 µm
β-SiC

Si

α-cristobalite

Yb2Si2O7

Yb2SiO5

β-cristobalite

20 µm

• Phase maps created from Raman Spectra with principle component analysis

• α-cristobalite phase disappears after 260°C due to phase transition

Goal: Quantify thermal and phase 
transformation stresses with EBC
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Stress measurements in doped EBCs
Photo-Stimulated Luminescence Spectroscopy (PSLS)

• Raman microprobe used for PSLS spectra acquisition

• Trace Cr3+ (few ppm or less!) substitutes for Al and 
can absorb green light and emit R(Red)-lines

Mullite
Alpha Alumina
YAG

Yb2Si2O7 EBC modified with Mullite (3Al2O3 2SiO2) and YAG (Y3Al5O12)

YbDS+D3
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• R-lines shift 7.6 cm-1/GPa (Lipkin and Clarke, 1996) 

• Crystallized EBC before steam exposure needed for baseline*

• Average minor compression in EBC, tensile near EBC-gas surface

0 h (As Sprayed) 100 h 300 h 500 h Tension

100 µm 100 µm

Actual
cm-1

EBC Stress Measurement using Photo-stimulated luminescence 
spectroscopy of Mullite: Thermal & TGO growth stresses

YbDS+D3, doped EBC (NASA)
1-h cycles at 1350°C in wet air

Dopants can allow for NDE of EBC stresses in service

CompressionPartially 
Amorphous
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• 100h test sample set as zero stress reference to visualize general trend

• Average EBC stress agrees with simplified 2D model results

100 h 300 h 500 h Tension

100 µm 100 µm

Actual
cm-1

EBC Stress Measurement using Photo-stimulated luminescence 
spectroscopy of Mullite: Thermal & TGO growth stresses

YbDS+D3, doped EBC (NASA)
1-h cycles at 1350°C in wet air

EBC stress changes as a function of SiO2 thickness

Compression

Measured:

2D FEM: -8 MPa

-17 MPa-13 MPa

0 MPa

0 MPa

-15 MPa

Parabolic EBC 
stress change

Average 
EBC Stress
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Clear directions going forward

1. We need better EBCs

• Thermal & oxidant barrier
• Need replacement for Si 

bond coating (Tmelt = 
1414°C)

• Understand effects of 
dopants on oxidation

2. Understand/mitigate 
the SiO2 phase 
trans-formation

• Need basic SiO2 data
• Stress impact on EBC 

needed for lifetime 
model

3. Characterization to 
further understanding

• EBC stress evolution with 
steam cycling

• Microstructure-relevant 
modelling for 
guidance/comparisons

50 µm
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Thank you for your attention!
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