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Perspective

Han, et al., (2020).  Laminar flame speeds of hydrogen and syngas 
measured from spherical flames, App. Energy and Combustion
Science, 1-4, pg 100008.

Chong and Hochgreb (2011).  Measurements of laminar 
flame speeds of liquid fuels:  Jet A-1, diesel, palm methyl 
esters, and blends using particle image velocimetry, Proc of 
Combustion Institute, Vol 33, 979-986. Chong and Hochgreb (2011).  Measurements of laminar flame speeds of 

acetone/methane/air mixtures, Combustion and Fuel, Vol 158, 490-500 

H2:  285 cm/s CH4:  38 cm/s Jet-A:  92 cm/s

• Jet-A vs Hydrogen vs Methane relative maximum laminar flame speeds
o H2:  285 cm/s; CH4:  38 cm/s; Jet-A: 92 cm/s
o Flashback risk for Jet-A > than for natural gas

 Aero applications less tolerance for risk (avoid lean premixed strategies)
  



© UCI Combustion Laboratory 2023
4/35

Prior/Current Work

Paths forward for ground based hydrogen
• Micromix strategies adopted by Solar, GE, MHI

Kawasaki (others) to provide low emissions 
performance with ever increasing hydrogen content

• Ansaldo GT-26, 36  two stage combustion
allows dilution
to temper NOx
formation
o H2 burning in air plus

CO2 and water
 Lowers flame temp

York, et al. (2013).  GE

GE:  <9ppm

MHPS (2019). H2 Power Generation Handbook

Mitsubishi

Solar Turbines

Hollon et al., 2011

Kawasaki, 2020
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Prior Work

• Aeroengine Context*
Woodward

Parker
Collins

* C.M. Lee, C. Chang, S. Kramer, and J. Herbon (2013).  NASA project develops next generation low-emissions combustor technologies, Paper AIAA-2013-0540

Collins Aerospace
Proprietary
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Prior Work

• Aeroengine Context*

* McDonell, V.G. (2021).  Emissions Reduction Technologies for 
Large Engine—UCICL Gas Turbine Combustion Short Course

R. Tacina, A. Mansour, L. Partelow, and C. Wey (2004).  Experimental Sector 
and Flame-Tube Evaluations of a Multipoint Integrated Module 

Concept for Low Emission Combustors, 
Paper GT2004-53263, Turbo Expo 2004, Vienna
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Prior Work

• Aeroengine Context:  NOx “Entitlement”

Tacina, R. (1990).  Low NOx Potential of Gas Turbine Engines, Paper AIAA-90-0550, 28th Aerospace Sciences 
Meeting, Reno NV.

Data from:  Dolan, B., Gomez, R., Zink, G., Pack, S., Gutmark, E., (2016).  Effect of Nozzle 
Spacing on Nitrogen-Oxide Emissions and Lean Operability, AIAA Journal, Vol. 54(6), pp 
1953-1961.

Collins Aerospace
Proprietary
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Prior Work

• Industrial Engine Entitlement
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Prior Work

• Industrial Engine Entitlement
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Prior Work

• Industrial Engine Entitlement
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Objectives

• The proposed work will 
o 1) adapt advanced LDI liquid fuel injectors designed by Collins Aerospace for aero engines to 

accommodate injection of hydrogen/hydrogen natural gas blends and screen
o 2) demonstrate their operation using experiments from laboratory scale model combustor 

configurations at elevated pressures and temperatures UC Irvine, and 
o 3) develop a design for test hardware that can be demonstrated at engine conditions in a test rig 

demonstration at Solar Turbines. 

Demon-
strate

Design
Screen

Adapt
Jet FuelHydrogen

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary
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Technical Approach

• Team
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Schedule and Budget

DOE:  $800,000
Cost Share:  $200,000
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Experimental methodology – CFD and Manufacturing

• Design of Experiments to establish the geometry variations
• Computational Fluid Dynamics to size air and fuel circuits

o Effective area targets: 0.145in2 air, 0.0055in2 fuel → expected 5-15% decrease for rough surface finish

• Additive manufacturing: Inconel 625

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary
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Injectors

• As tested Collins injectors/
mounting plates
o 13 for pure B-B design
o 3 for correlation validation

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary
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Experimental methodology – Experiment

• 13+3 injectors, with 3 different mounting plates

• 6 kW Convectronics electric heater
• 6in-long stainless steel airbox
• 2x type K thermocouples
• Tek Bar 3120B pressure transducer
• 3x Brooks 5000i Series Mass Flow Controllers
• Quartz tube combustor
• Horiba PG 350 gas analyzer (0.4 L/min)
• Nikon D90
• FB-N9-U Dynacolor
• Phantom v7.1

Sonic 
Orifice

Collins
Injector



© UCI Combustion Laboratory 2023
19/35

Experimental methodology – Emissions 

• Horiba PG 350 gas analyzer (0.4 L/min)
o Exhaust well mixed in the radial at the exit (within 0.5 ppmvd)
o Actual exhaust concentration represented by the centerline

• Emissions for gas turbines: corrected to 15% O2 
• Bias when reporting H2 vs CH4 on a ppmvd basis

o  EPA Method 19: ppmvd → ng/J

𝑭𝑭𝒌𝒌 =
𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐(𝟑𝟑.𝟐𝟐𝟐𝟐𝟔𝟔 + 𝟏𝟏.𝟐𝟐𝟑𝟑𝟓𝟓 + 𝟎𝟎.𝟐𝟐𝟓𝟓𝟓𝟓 + 𝟎𝟎.𝟏𝟏𝟐𝟐𝟏𝟏 − 𝟎𝟎.𝟐𝟐𝟐𝟐𝟒𝟒)

𝑸𝑸𝒈𝒈𝒈𝒈

𝟓𝟓𝒎𝒎 = 𝟓𝟓𝒎𝒎,𝒈𝒈𝒓𝒓𝒓𝒓𝑭𝑭𝒌𝒌
𝟐𝟐𝟎𝟎.𝟗𝟗

𝟐𝟐𝟎𝟎.𝟗𝟗 − %𝟒𝟒𝟐𝟐

𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕𝒓𝒓𝒕𝒕 = �
𝒌𝒌=𝟏𝟏

𝒏𝒏

𝑿𝑿𝒌𝒌𝑭𝑭𝒌𝒌
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Experimental methodology – Uncertainty

• Pressure transducers: ±0.0075% full scale (145 psi, 5 psi)
• Brooks MFC:  ±1% full scale
• Heater controller:  ±2% of reading
• Temperature controller: ±0.25% of reading
• Gas analyzer:  ±0.25% full scale (500 ppm CO, 50 ppm NO, 50 ppm NOx)

• Kline and McClintock accumulated uncertainty, partial derivatives of independent 
variables:
 Air effective area:  0.02%
 Fuel effective area:  3.91%
 Equivalence ratio at LBO: 6.68%
 Emissions:   11.1%
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Experimental methodology – Flame diagnostics

• OH* chemiluminescence (as a flame marker)
o Monochrome Dynacolor FB-N9-U – Sony CMOS sensor
o Exposure time: 0.9999 s
o Gain: 6 dB

• MATLAB code to extract imaging responses
o Average and Maximum brightness
o Flame area and Heat release area 

(intensities >90% of max.)
o Center of gravity (COG) and 

Leading edge (LE) of heat release area
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Test Plan

• LBO and EA: 15-point matrix for each injector: 12 from Box-Behnken + 3 repeats

• 13 + 3 injectors

• Emissions: B-B 27 pt. (AFT > 1500K) 
 + 16 Low Temp Matrix (AFT <1500 K)
  >600 test pts.

Factor Low Mid High

A – Air Split -1 0 1

B – Fuel Swirl -1 0 1

C – Air Swirl (inner) -1 0 1

D – Preheat Temperature [K] 465 573 675

E – Pressure Drop [%] 2 4 6

F – Fuel composition [% H2] (by vol) 0 50 100
Collins Aerospace
Proprietary
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Results

• Effective Areas
• Operability
• Emissions
• Imaging
• Optimization
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Results and discussion – Effective areas

• Air circuit
o Average: 0.1492 in2

o Std. dev.: 2.15 %

• Fuel circuit
o Average: 0.0058 in2

o Std. dev.: 12.82 %
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Flame Structure – OH* Dynacolor camera—Configuration 3—Example Results

1 9

18

27

10

19

5

14

23

2

11

20

3

12

21

4

13

22

6

15

24

7

16

25

8

17

26



© UCI Combustion Laboratory 2023
27/35

Results and discussion – Emissions

• Analysis of Variance (ANOVA)
o Significant if p<0.05
o Simplification: term removed if change in C.V. within 5%

• Coded equations:
o 𝒕𝒕𝒏𝒏 𝟓𝟓𝟒𝟒 = 𝟐𝟐.𝟐𝟐𝟐𝟐 − 𝟎𝟎.𝟏𝟏𝟐𝟐𝟐𝟐𝟏𝟏𝟏𝟏 + 𝟎𝟎.𝟎𝟎𝟐𝟐𝟐𝟐𝟐𝟐𝟎𝟎 − 𝟎𝟎.𝟑𝟑𝟐𝟐𝟏𝟏𝟎𝟎𝟓𝟓 + 𝟎𝟎.𝟎𝟎𝟗𝟗𝟐𝟐𝟐𝟐𝟎𝟎 − 𝟎𝟎.𝟎𝟎𝟐𝟐𝟐𝟐𝟗𝟗𝟎𝟎 − 𝟎𝟎.𝟐𝟐𝟗𝟗𝟐𝟐𝟐𝟐𝑭𝑭 −
𝟎𝟎.𝟐𝟐𝟎𝟎𝟗𝟗𝟐𝟐𝟖𝟖 + 𝟎𝟎.𝟎𝟎𝟐𝟐𝟑𝟑𝟐𝟐𝟎𝟎𝟓𝟓 + 𝟎𝟎.𝟎𝟎𝟗𝟗𝟐𝟐𝟓𝟓𝟓𝟓𝟖𝟖+ 𝟎𝟎.𝟏𝟏𝟐𝟐𝟗𝟗𝟗𝟗𝟎𝟎𝑭𝑭+ 𝟎𝟎.𝟐𝟐𝟎𝟎𝟑𝟑𝟐𝟐𝟖𝟖𝟐𝟐

o 𝟏𝟏𝟒𝟒 = 𝟐𝟐.𝟏𝟏𝟎𝟎 − 𝟎𝟎.𝟑𝟑𝟐𝟐𝟓𝟓𝟏𝟏𝟏𝟏 − 𝟎𝟎.𝟐𝟐𝟐𝟐𝟑𝟑𝟐𝟐𝟓𝟓 + 𝟎𝟎.𝟐𝟐𝟗𝟗𝟐𝟐𝟐𝟐𝟎𝟎 + 𝟎𝟎.𝟐𝟐𝟑𝟑𝟗𝟗𝟐𝟐𝑭𝑭 + 𝟎𝟎.𝟐𝟐𝟑𝟑𝟗𝟗𝟐𝟐𝟖𝟖 − 𝟎𝟎.𝟐𝟐𝟏𝟏𝟎𝟎𝟐𝟐𝟏𝟏𝟓𝟓 −
𝟎𝟎.𝟏𝟏𝟓𝟓𝟏𝟏𝟏𝟏𝟏𝟏𝑭𝑭

o 𝟏𝟏𝟒𝟒𝑿𝑿 = 𝟑𝟑.𝟏𝟏𝟎𝟎 − 𝟎𝟎.𝟐𝟐𝟐𝟐𝟎𝟎𝟐𝟐𝟏𝟏 − 𝟎𝟎.𝟐𝟐𝟓𝟓𝟐𝟐𝟎𝟎𝟓𝟓 + 𝟎𝟎.𝟐𝟐𝟐𝟐𝟏𝟏𝟎𝟎𝟎𝟎 + 𝟎𝟎.𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐𝑭𝑭 + 𝟎𝟎.𝟐𝟐𝟎𝟎𝟗𝟗𝟐𝟐𝟖𝟖 − 𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟎𝟎𝟏𝟏𝟓𝟓 −
𝟎𝟎.𝟏𝟏𝟓𝟓𝟑𝟑𝟏𝟏𝟏𝟏𝟎𝟎 + 𝟎𝟎.𝟏𝟏𝟓𝟓𝟓𝟓𝟏𝟏𝟏𝟏𝟖𝟖 + 𝟎𝟎.𝟏𝟏𝟎𝟎𝟎𝟎𝟏𝟏𝟓𝟓𝟖𝟖

• Coefficient of Variance (C.V.): 8.81% for CO, 28.66% for NO, 15.90% for NOx
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• 𝟏𝟏𝟒𝟒 = 𝟐𝟐.𝟏𝟏𝟎𝟎 − 𝟎𝟎.𝟑𝟑𝟐𝟐𝟓𝟓𝟏𝟏𝟏𝟏 − 𝟎𝟎.𝟐𝟐𝟐𝟐𝟑𝟑𝟐𝟐𝟓𝟓 + 𝟎𝟎.𝟐𝟐𝟗𝟗𝟐𝟐𝟐𝟐𝟎𝟎 + 𝟎𝟎.𝟐𝟐𝟑𝟑𝟗𝟗𝟐𝟐𝑭𝑭
+𝟎𝟎.𝟐𝟐𝟑𝟑𝟗𝟗𝟐𝟐𝟖𝟖 − 𝟎𝟎.𝟐𝟐𝟏𝟏𝟎𝟎𝟐𝟐𝟏𝟏𝟓𝟓 − 𝟎𝟎.𝟏𝟏𝟓𝟓𝟏𝟏𝟏𝟏𝟏𝟏𝑭𝑭

o G, AFT:  ↑ AFT, ↑ Zeldovich mechanism, ↑ NO
o F, % H2:  ↑ H2, ↑ H radicals and ↑ flame speeds, ↓ mixing time, ↑ NO
o E, preheat: ↑ preheat, ↓ ignition time, ↓ mixing time, ↑ NO
o A, air split: ↑ air split, ↑ interaction fuel and air, ↑ mixing, ↓ NO
o AC:  ↑ air split and ↑ air swirl, ↑ interaction and mixing, ↓ NO
   ↓ air split, air swirl is insigniticant
o C, air swirl: ↑ air swirl, ↑ traveling distance, ↑ mixing, ↓ NO
o AF:  air split is significant for H2: ↑ air split pushes flame increasing mixing, but ↑ H2 

  reduces mixing time before reaction
o B, fuel swirl: insignificant, since air flow rate is ~11.7 times larger than fuel flow rate
o D, pressure drop: insignificant: PD > 2%, turbulent mixing remains unchanged

Results and discussion – NO model interpretation
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Results and discussion – H2 vs CH4

• Pressure drop  4%
• Preheat temperature 675 K
• Adiabatic flame temp. 1675 K
• NOx Hydrogen 2.05/19.87/16.72
• NOx Natural gas ---/9.31/10.19

Hydrogen Hydrogen

Natural Gas

Hydrogen

Natural Gas

CONFIGURATION   7 CONFIGURATION   2 CONFIGURATION   3
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Example CFD—Collins Aerospace

• Relative Performance:  Config 2 and Config 7
Collins Aerospace
Proprietary

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary

Collins Aerospace
Proprietary
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Results and discussion – Optimization

• Goal: minimization of CO, NO, and NOx, with low pressure drop
• Methane @ 465 K preheat

• Hydrogen @ 465 K preheat

AFT [K] Air Split Fuel Swirl Air Swirl P.D. [%] NO [ng/J] NOx [ng/J]

1500 1 1 0.20 2.08 0.03 2.05

1675 1 -1 1 2.02 0.003 1.53

1850 1 -1 1 2.01 0.24 2.97

AFT [K] Air Split Fuel Swirl Air Swirl P.D. [%] NO [ng/J] NOx [ng/J]

1500 1 -1 1 2.02 0.30 2.50

1675 1 -0.20 1 2.00 0.98 4.25

1850 1 -0.08 1 2.00 2.04 6.52

• Goal: minimization of CO, NO, and NOx, with low pressure drop
• Methane @ 675 K preheat

• Hydrogen @ 675 K preheat

AFT [K] Air Split Fuel Swirl Air Swirl P.D. [%] NO [ng/J] NOx [ng/J]

1500 1 -1 1 2.03 0.36 1.87

1675 1 -1 1 2.01 1.09 3.43

1850 1 -1 1 2.01 2.19 5.47

AFT [K] Air Split Fuel Swirl Air Swirl P.D. [%] NO [ng/J] NOx [ng/J]

1500 1 -1 1 2.01 2.37 4.83

1675 1 -0.44 1 2.00 3.91 7.20

1850 1 0.09 1 2.00 5.84 10.05

• ↑ air split and ↑ air swirl are preferred
• ↓ fuel swirl preferred for fuel flexibility performance
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Conclusions

• CO is decreased with: ↑ AFT, ↑ air swirl, ↑ H2, ↑ air split
• NO is decreased with: ↑ air split, ↑ air swirl, ↓ preheat
• NOx is 60-80% NO

o Traditionally 90-95%...

• Optimization
o Injector and emissions levels not sensitive to flame temperature, preheat and fuel composition
o New injector configuration with: +1 air split, -1 fuel swirl, +1 air swirl

• Best-case scenario: ↑ air split, ↑ air swirl, ↓ preheat, ↓ AFT
• Average lowest emissions are 1.54 and 1.67 ng/J (0.8 and 1.27 ppmvd 15% O2) for 

methane and hydrogen, respectively
o NOx Entitlement for jet fuel attained with pure hydrogen combustion.
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Next Steps

• Based on optimization, new configs designed/manufactured
that should further reduce NOx

• Test single injectors at high pressure

• Premixed configuration for baseline
o See Malcolm Overbaugh Poster

• Array Testing

• Continued analysis

Collins Aerospace
Proprietary
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