Investigation of Flame Structure for Hydrogen Gas Turbine Combustion

UTSR Project FE0032074

October 30th 2023

Prof. Robert Lucht Prof. Carson Slabaugh Dr. Rohan Gejji Tristan Shahin

Thomas McLean Zander Hodge Benjamin Murdock Keaton Koenig

Purdue University West Lafayette, IN

DOE Technical Monitor: Andrew O'Connell

Investigation of Flame Structure for H₂ Gas Turbine Combustion

Advance hydrogen combustion technology from the current technology concept and/or application formulated stage (TRL 2) to a component and/or system validation in laboratory environment (TRL 4)

- Explore flame structure and dynamics with hydrogen, ammonia, and mixtures of these fuels with natural gas
- High-pressure optically accessible combustor designed to operate engine relevant conditions (P₃: 40 bar, T₃: 1080 K)
 - Unsteady configuration for studies of self-excited combustion instabilities
 - Steady-state configuration for emissions, LBO, flashback.
- Research focus on premixed multi-stage, multi-tube, micromix (M³) injectors
- Application of advanced diagnostic methods to study flame structure and dynamics
 - High-speed particle imaging velocimetry (PIV), coherent anti-Stokes Raman scattering (CARS) for T, species, and planar laser-induced fluorescence (PLIF) imaging for OH, NO, and NH concentrations
 - Extractive gas sample based emissions characterization

Summary

- Completed development of a modular multi-stage, multitube, micromix (M³) injector
- Developed high-pressure gaseous and liquid ammonia delivery system to the experiment
 - Verified operation over range of operating pressures and flowrates
 - Robust operation with liquid and vapor-phase injection
- Characterized influence of fuel composition on selfexcited combustion instabilities with ammonia, hydrogen and natural gas fuels
 - Experiments in high-pressure optically accessible combustor at 10-12 bar and inlet air temperature of 750 K

Design Envelope

- Investigation of H₂ and NH₃ (H₂ carrier), and mixtures of these fuels with natural gas
- Hydrogen assumed to be derived from NH₃ decomposition
- NH_3 decomposition efficiency (η) swept from 0.4 to 0.9
 - Combustor length sized for ~14.5 ms residence time to allow retrofit to current combustors
- Fuel fraction (χ) swept from 0.5 to 0.9
- Equivalence ratio determined at a fixed flame temperature of 1980 K (DOE target for 65% combined cycle efficiency gas turbines)

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) N G$$

Fluid	χ	η	$\dot{m}_{max} \left[lb/s \right]$
H_2	0.9	0.9	0.01
N_2	0.9	0.9	0.05
NG	0.5	N/A	0.02
NH_3	0.9	0.4	0.04
Air	N/A	N/A	1

Premixed laminar flame speed (a) and variation in equivalence ratio for an adiabatic flame temperature of 1980 K (b).

Natural Gas and Ammonia Effect on H₂ Combustion

- Investigation of H_2 and NH_3 (H_2 carrier), and mixtures of these fuels with natural gas
- Significant reduction in flame speed with addition of either natural gas or ammonia to hydrogen
- Addition of even small amounts of ammonia to otherwise stable H₂/NG fuel mixtures has a dramatic effect on flame instabilities

Combustor Design

• High-pressure (10-20 bar) optically accessible combustor

Injector Sizing

- Acoustic design based on linearized Euler equations using the Generalized Instability Model (GIM)
- Combustor dimensions designed to promote longitudinal mode combustion instability at 540 Hz (1L frequency)
 - \circ Combustor residence time ~14.5 ms
- Combustor divided into domains representing NH₃, NG, H₂ injection regions and combustor
- Choked inlet and exit boundaries
- Injector designed as a ¹/₂ wave resonator at the chamber acoustic frequency

Domain Lengths [in]		
Air	4.31	
NH3/Air	5.30	
NG/NH3/Air	6.55	
H2/N2/NG/NH3/Air	2.75	
Combustor	31.00	

Injector Design

- Premixed multi-stage, multi-tube, micromix (M³) injectors distributed in an uniform array in cylindrical combustion chamber
 - $_{\odot}$ Discrete axially staged sections for NH_3, NG and H_2 injection
 - 19 injector elements with jet in crossflow reactant injection
 - o Uniform inter-element separation
 - \circ Injector Mach number between 0.25 0.28 at typical flow conditions

Injector Geometry		
Ø _{element}	0.245 [in]	
Velocity	300 – 400 [ft/s]	

Mach Number		η		
		0.4	0.9	
x	0.5	0.25	0.25	
	0.9	0.27	0.28	

Velocity		η		
		0.4	0.9	
	0.5	432 [ft/s]	439 [ft/s]	
X	0.9	490 [ft/s]	514 [ft/s]	

Ammonia System Design

- Ammonia delivered in saturated state pressurized to target conditions in a piston tank
 - o 70 kg of ammonia available per test at maximum supply pressure of 345 bar
- Ammonia delivered to steady state vaporizer prior to injection
 - Accommodates liquid NH₃ injection

Ammonia System Design

- Ammonia filled into piston tank at saturated state into piston tank
- Piston tank pressurized with gaseous nitrogen (<345 bar)
- Liquid ammonia delivered from piston tank to steady state vaporizer
 Linear encoder provides position feedback from piston
- Gaseous ammonia injected into combustor through JICF injector at target conditions
- Ammonia flowrate metered using cavitating (liquid) and sonic nozzles (vapor)

Ammonia Pressurization

Instrumentation Layout

Measurement	Instrumentation	Range	Accuracy
LF Pressure	GE Sensing UNIK50E6	35 bar (test article), 70 bar (feed system)	0.04% FSO
HF Pressure	Kulite WCT-312M-35/70BARA	35/70 bar	0.1% FSO
Temperature O	K-type thermocouple (GKMQIN-062G-06)	< 1250°C	2.2°C or 0.75%

Diagnostic	Equipment
OH* Chemiluminescence Imaging	Phantom V2512 + Lambert HiCATT25 320±20 nm band-pass filter

Results – Test Operation

- Experiments performed with dynamics configuration to illustrate influence of fuel composition
 - \circ $\,$ Mean chamber pressure 10 -12 bar $\,$
 - Ignition achieved using laser induced spark with a single-element operating with premixed hydrogen-air
 - Pre-vaporized ammonia delivered from piston tanks at target pressure
 - Natural gas and hydrogen delivered from bulk systems
 - All reactants metered with critical flow venturis upstream of injector

2.5

2

Shutdown

3.5

3

Main Flame

Ignition

1.5

Interrogation Window

1.4

1.2

0.8

0.6

0

p_{cc}[MPa]

Pilot

0.5

Ignition

Results

- Systematic variation of χ and η to investigate influence of hydrogen and ammonia addition on combustion dynamics
- Hydrogen addition observed to suppress combustion instabilities
- Combustion instability amplitude is largely invariant to the addition of ammonia in absence of natural gas addition
- As hydrogen content is decreased, the addition of ammonia increases combustion instability amplitudes

Fuel Composition:

$$\boldsymbol{\chi}\left[\eta\left(\frac{3}{2}H_2 + \frac{1}{2}N_2\right) + (1-\eta)NH_3\right] + (1-\boldsymbol{\chi})NG$$

Results: H₂ Addition

- Addition of H_2 is shown to suppress combustion instability (decreasing χ)
- At $\chi = 0.5$, p'/p_c of ~30% observed, with a longitudinal mode instability at the 2L frequency ~1075 Hz
- At $\chi = 0.7$, p'/p_c of ~2% observed, with the longitudinal mode instability dampened significantly

$$\chi \left[\eta \left(\frac{3}{2}H_2 + \frac{1}{2}N_2 \right) + (1 - \eta)NH_3 \right] + (1 - \chi)NG$$

- Combustion instability amplitude is largely invariant to addition of NH₃ without NG present
- Fuel fraction of H₂ based fuel is at a maximum ($\chi = 1.0$), while NH₃ decomposition efficiency is varied ($\eta = 0.6 0.9$)
- Chamber pressure fluctuations are low (p'/p_c of ~2%)
- Absence of longitudinal mode instabilities

 $\chi \left| \eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right| + (1 - \chi) N G$

- With NG present (30%), small amounts of NH₃ addition increases combustion instability amplitude
- At $\eta = 1.0$, p'/p_c of ~2.5% observed, with a weak longitudinal mode instability at the 2L frequency ~1075 Hz
- At $\eta = 0.9$, p'/p_c of ~13% observed, with the longitudinal mode instability strength increased

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) N G$$

$$\uparrow \\ 0.7 \qquad 0.7$$

Results: NH₃ Addition

- Further NH₃ addition shifts the dominant longitudinal instability mode from 2L to 1L
- At $\eta = 0.7$, p'/p_c of ~24% observed, with a strong longitudinal mode instability at the **2L** frequency ~1075 Hz
- At $\eta = 0.5$, p'/p_c of ~29.1% observed, with a strong longitudinal mode instability at the **1L** frequency ~575Hz

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) N G$$

0.7
0.7

Results: OH* Chemiluminescence

- OH* chemiluminescence measurements performed at 50kHz
- Time-averaged images provide a mean flame image using OH* as a marker for the heat release rate (I)
- Instability amplitude increases with increasing ammonia concentration
 - At η =0.5, the location of maximum heat release rate fluctuations shift downstream as 2L amplitude is significantly higher than 1L

 $\chi = 0.7, \eta = 0.7$

Results: Phase Averaged OH* CL

- Multivariate singular spectrum analysis (mSSA) performed to sync OH* CL fluctuations at the 2L frequency
- Phase averaged OH* CL results show the fluctuation of heat release as NH₃ is added
- Heat release fluctuations are strongest at x = 0 - 30 mm

DOE UTSR Year 2 Review Meeting

October 30, 2023

Results: Phase Averaged OH* CL

DOE UTSR Year 2 Review Meeting

Summary

- Successfully developed and demonstrated operation of highpressure ammonia system for combustion research with high hydrogen content fuels
- Characterized influence of ammonia and hydrogen addition on self-excited combustion instabilities at elevated pressure with a premixed multi-element micromix injector
 - Disparate flame speeds of ammonia and hydrogen allow stable combustion for a wide range of η
 - Addition of natural gas increases propensity for instability and sensitivity to ammonia addition
 - Additional tests and measurements planned to fully describe the behavior governing stability limits

Next Steps:

- Detailed characterization of flame structure and dynamics with application of chemiluminescence, PLIF, PIV, and CARS measurements
- Global emissions characterization using FTIR based extractive product gas sampling
- Collaborate with Sreenath Gupta and his group at Argonne National Labs on modeling of the ammonia combustion results

The authors gratefully acknowledge the support and guidance from General Electric, Air Products and Velo3D for the project

