

Unrestricted © Siemens AG 2023

siemens.com

SIEMENS

Ingenuity for life

Acknowledgements

SIEMENS

This material is based upon work supported by the Department of Energy Award Number DE-FE-0031808. Siemens would sincerely thank Patcharin Burke/Andrew O'Connell, DOE FPM and the DOE FECM division for support for the project. Siemens also thanks the team from Siemens Energy in Orlando/Mulheim, EPRI, ORNL and CCAT for valuable project contribution.

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Outline

Introduction

Project Objective and Team

Project Approach to Meet Technical Targets

- Task 2.0 Digital Manufacturing Efforts for Optimization of Parts for Additive Manufacturing (AM)
- Task 3.0 Steam turbine materials development using AMs for Process-Structure-Property (PSP) relationships
- Task 4.0 Design and component build efforts using AM
- Task 5.0 Non-destructive evaluation (NDE) inspection of printed components
- Task 6.0 Conduct Rig/Engine testing of AM Steam turbine Components
- Task 7.0 Data-driven AM Qualification & Production scale-up

Conclusions

Development Approach For Technology Maturation Plan

SIEMENS

Unrestricted © Siemens AG 2023

Project Team and Activities

SIEMENS

]				[Siemens	Overall Project Lead. Activities involve repair component scanning and CAD
	Anand Kulk	arr	ni, Siemens			model repair, Design for AM, CFD modeling, Markforged/Selective Laser
l		-				Melting (EOS-M400) materials development, NX based toolpath design for
Materials knowledge, Sta Field Experience, Anand Kulkarni, Siemens	eam Turbines		Contract Administration Kevin Go, Siemens Kathy Sasala, Siemens			repaired and redesigned components, Component buildup, Steam turbine rig testing, Technology maturation into supply chain.
George Atland, Siemens Anett Bergmann, Siemens Valerie Golovlev, Siemens Sebastien Dryepondt, ORI Eric Prescott, EPRI	NL	-	- Contract management Financial Management Terri Held, Siemens - Financials, invoicing - Subcontractor agreements		ORNL	Large scale metal AM fabrication Lead. This includes materials feasibility selection, process optimization, controls, and toolpath design for repaired and redesigned components. Component build up.
 Materials performance Design for additive man 	nufacturing		Senior Technical Advisors Xavier Montesdeoca, Siemens		EPRI	NDE task Lead. Conduct Field and shop deployable NDE for secondary
Materials/Process develo Kyle Stoodt, Siemens Lonnie Love, ORNL Michael Kirka, ORNL Jeff Crandall, CCAT Henry Babiek - Markforged, EOSM-40	opment via AM		Ralf Bell, Siemens Thomas Pool, Siemens John Shingledecker, EPRI Tom Maloney, CCAT - Steam turbine design and modifications - Advanced Manufacturing - Service/field issues			of new and repaired components. Will utilize its in-house state-of-the-art volumetric and surface NDE technologies (including standard and advanced techniques) to determine the best methods and limitations for NDE for the different AM methods and component geometries built within this project.
wire AM, Optomec, DM development Non destructive evaluation	G-Moriprocess		Program Management Jason Weissman, Siemens - Risk analysis	-	CCAT	Direct energy deposition AM Lead. CCAT will utilize their advanced manufacturing assets (Optomec and DMG-Mori systems) to develop
George Connolly, EPRI John Lindberg, EPRI Anand Kulkarni, Siemens - Conventional and advar concepts	nced NDE		Component performance validation Tom Joyce, Siemens Anett Bergmann, Siemens - Engine/Test rig validation			processes and fabricate components of interest identified for this program. This includes materials development, build components using additive and/or hybrid machine tools, and measure quality metrics for the builds.

Unrestricted © Siemens AG 2023

Page 5

Task 2 - Digital Manufacturing Efforts - Design for AM for Valve Component

SIEMENS

Design for AM to improve contact wear of valve components

Redesign to facilitate AM processing

Unrestricted © Siemens AG 2023 Page 6

Task 2 - CAD Guided Machining/Repair of Components

SIEMENS

Scan approach to rebuild CAD model and define machining path virtually and physically

Unrestricted © Siemens AG 2023

Task 2 – Digital Manufacturing of AM Components

Layered monitoring to trace defects/dimensions Camera view 718 Thermal Tomography Heat map Thermal tomography data Reconstructed 3D model

SIEMENS

Unrestricted © Siemens AG 2023 Digital twin of printed components utilizing in-situ monitoring data Page 8 Kulkarni/ Siemens

Deviation Gauge Analysis from Digital Models

SIEMENS

Deviation report

Feature	Amsense	CAD	Error
D1	37 32	37 34	0.02
DI	51.52	57.54	0.02
D2	30.40	30.28	0.12
D3	5.0	4.66	0.34
D4	4.88	4.66	0.22
D5	4.86	4.66	0.2
D6	4.84	4.66	0.18
D7	5.88	5.50	0.38
L1	25.73	25.40	0.33
L2	25.65	25.40	0.25
L3	18.28	17.96	0.32
L4	18.15	17.96	0.19
L5	18.29	17.96	0.33
L6	17.98	17.96	0.02
Н	24.16	24.18	0.02
Feature	CT mm	CAD mm	Error mm
D1	36.88	37.34	0.46
D2	31.12	30.28	0.84

Feature	CT mm	CAD mm	Error mm
D1	36.88	37.34	0.46
D2	31.12	30.28	0.84
D3	4.48	4.66	0.14
D4	4.30	4.66	0.36
D5	4.28	4.66	0.38
D6	4.32	4.66	0.34
D7	5.32	5.50	0.18
L1	24.92	25.40	0.48
L2	24.59	25.40	0.81
L3	17.11	17.96	0.85
L4	17.87	17.96	0.09
L5	17.06	17.96	0.9
L6	17.95	17.96	0.01
н	23.32	24.18	0.86

Unrestricted © Siemens AG 2023 CT data showed larger deviation due to edge effects

Page 9

Task 3 – Materials Development and Process-Structure Property Relationships

SIEMENS

Unrestricted © Siemens AG 2023 Page 10

Materials Data Generation

Huge range of data for several temperatures needed: tensile, HCF, LCF, creep/stress rupture, TMF, corrosion, physical props....

Test Matrix defined for IN718, 17-4PH and X12CrMoWVNbN10-1-1

#Sealing segments - weight: ~3 kg length ~ 48 to 70 mm

#Stationary drum blades - weight: ~0.1 - 0.6 kg length: ~70 to 350 mm

#Rotating drum blades - weight: ~0.1 - 0.6 kg Length: ~70 to 350 mm

#Last stage blades

Second last end stage - weight: ~12 kg Length: ~520 mm

Stationary blade end stage - weight: ~28 kg Length: ~1200 mm

Materials Testing Underway

Materials Testing

SLM IN718 (40/80 um build)

Testing duration (days)	Material	Test Type	# Tests	Test Details	Target Cycles
45	SLM 718	Tensile	8	X and Z, RT and 650C	
28	SLM 718	LCFTesting	12	X and Z, no hold	Tests with 1000, 10k and 30k cycles to fracture
417	SLM 718	Creep	6	X and Z, 650 C	Up to 10k hours
60	SLM 718	Wear	4	X and Z	

SLM X12 (40 um)

Test	Test temperature	Comments
	°C	
Creep Rupture 10kh 0°	550	250MPa, 1% strain after 3kh
Creep Rupture 10kh 0°	600	160MPa, 1% strain after 3kh
Creep Rupture 10kh 0°	600	200MPa, 1kh
Creep Rupture 10kh 0°	650	70MPa, 1% strain after 3kh
Creep Rupture 10kh 90°	600	160MPa, 1% strain after 3kh
HCF smooth 0°	20	3 A ratios (sm=0, sm=sa, sm=0,3*sa)
HCF smooth 0°	450	1 A ratio (sm=sa)
HCF smooth 0°	600	3 A ratios (sm=0, sm=sa, sm=0,3*sa)
LCF 0°	20	Tests with 1000, 10k and 30k cycles to fracture
LCF 0°	600	Tests with 1000, 10k and 30k cycles to fracture
LCF 0°	600	Tests with 1000, 10k and 30k cycles to fracture
LCF 0°	625	Tests with 1000, 10k and 30k cycles to fracture
LCF 0°	625	Hold-time 1000LW

Task 4 - Design and component build efforts using AM

SIEMENS

Page 11

Wire Arc AM: Effect of Process on Melt Pool Geometry and Grain **Morphology - Correlation to Property**

SIEMENS

Rotational Blade L-1R Wire Arc Build

SIEMENS

Printed blade scanned using FARO arm and compared against printed CAD and final machined CAD model

- Max deviation of as-printed blade ~3 mm oversized
- Final blade geometry fits in as-printed part
- Minimum excess material ~5 mm

12 hours build time emens

Task 5 - Non-Destructive Evaluation (NDE) Inspection of Printed Components SIEMENS

This task will advance NDE plans for the selected component geometries for quality inspection for process repeatability. Both surface and volumetric techniques will be evaluated via multiple techniques including conventional NDE (eddy current testing and ultrasonic testing (UT)) and advanced NDE (phased-array ultrasonics (PAUT), state-of-the-art UT using full matrix capture (FMC) and total focusing method (TFM)).

Potential NDE Proce	sses for Addit	ively Manufactured Steam Turl	bine Components		
Туре	Process	Example Uses	Rational	Question for Additive	10
Eddy Current	Surface-Conv.	Airfoil surfaces, blade root (exposed), shrouds (verification of visual) and seals	Conventional surface inspections beyond visual methods	New geometries may make inspection more difficult, different AM processes give different surface textures	
Flexible Eddy Current	Surface-Adv		Enhanced inspections for curved geometries, hard to access locations		Different in the second s
Phased Array UT	VolConv.		Today's state-of-art for crack detection	New geometries may hinder conventional UT process	
TFM/FMC	VolAdv.	Disc attachments, blade roots (attached), repair quality of blades new blade geometry and quality	Full volumetric Data with less part knowledge, Multiple Data Evaluation Schemes (data science enabled), Non-linear examinations	inspections, new grain structures will attenuate UT signals differently, new potential defect/damage locations	
Process Compensated Resonant Technique (PCRT)	VolAdv.	Entire Blade Volume	Quality' Measure for Part-to-part variations, post-test exposure shape and material changes	Can process variations in additive be identified using resonance techniques	

EPRI has NDE technologies/techniques used currently on steam turbines and being considered for

Unrestricted © Siemens AG 2023

AM produced components

Page 14

AM Test Artifact for UT

Selected Conventional UT Scan Results

- Scanned in immersion from top and bottom using Ø0.375in. conventional UT probes
 - Instrument: Zetec DYNARAY Lite
 - Four frequencies: [2.25, 3.50, 5.00, 7.50]MHz
- Observations:
 - Variation in surface coupling evident
 - SDH pairs difficult to distinguish
- Limit in detection computed as a function of feature dimension or orientation

UT and VT comparison Test Block

A smaller accompanying block built alongside the AM test artifact by the same instrument and same build parameters

- Overall dimensions (80×56×15)mm
- All features are surface-connected
 - · Spokes and "wedges" of varying angle and thickness
 - Pits of varying dimension match the shapes and size range of the five tapering features of the AM test artifact
- Intended for VT for quantitative comparison against the volumetric UT results extracted from the AM test artifact

Image processing measures as-built feature dimension and area for quantitative analysis; compared against nominal or expected values [3]

SIEMENS

Page 16

UT and VT comparison Feature Visibility and Feature Distortion

VT observations:

- Evident feature distortion, though improve as dimension increases
- Limits of detection depend on shape
- Detection limit in the range 0.30mm to 0.40mm

Comparative limits of detection in table for certain shapes (UT and VT) shown in table

Feature	VT	Conventional UT 5MHz	Conventional UT 7.5MHz	FMC/TF M 5MHz	FMC/TFM 10MHz
Circle	0.4 0	0.29	0.27	0.20	0.25
Square	0.4 0	0.26	0.20	0.18	0.20
Diamond	0.4 0	0.25	0.23	0.16	0.26

[X] Ultrasonic Testing (UT) Reference Standard for Additive Manufacturing (AM) Quality Control. EPRI, Palo Alto, CA: 2022. 3002025339 Page 17

direction

Task 6 - Conduct Rig/Engine Testing of AM Steam turbine Components

Outflow

Leakage suppressed

Outflow

Guiding ridges

niection in radial direction to

optimize upstream flow of rotating blade cover plate

jection with diminution in

ferential and radial

SLM printed blades for rig testing

Assembled test rig

green: Main Flow

red: Leakage Flow

w/ All Cavities

w/ Jet

Inflow

Inflow

Stationary drum blade design

Page 18

SIEMENS

Task 6 – 1st Rig Test Results

SIEMENS

A lower normalized total pressure loss or profile loss of 0.7% is observed with 1st iteration

Unrestricted © Siemens AG 2023 Page 19

Cav 🗠 MK1 🙌 MK2 Cav 📥 MK1 🖊 MK2 Cav 📥 MK1 🖊 MK2 Cav 📥 MK1 材 MK2 1.0 1 (1.0 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 g ð 0.4 0.4 Relative 0.4 0.4 2 0.7 0.Z e e 0.2 0.2 0.0 0.0 0.0 0.0 0.65 0.70 0.80 0.85 0.60 0.75 $\frac{T_t - T_{t,aus}}{T_{t,ain} - T_{t,aus}}$ $P_{t} - P_{t,aus}$ 0.3 70 80 $\overline{P_{t,ain} - P_{t,ain}}$ Gierwinkel in * Machzahl

1

ó

Kan

2

The pressure losses are shifted to the outer side wall which clearly indicates the impact of the bypass blades.

Stationary Drum Stages Blades

1st Iteration

SIEMENS

JII

First trial platform printed in January
 ≻Heat treatment test(on air and on vacuum)
 >Sand blasting test
 >Dimensional check →optimization

➢Dimensional check →optimization of print model needed

> Unrestricted © Siemens AG 2023 Page 20

2nd Test Campaign for AM Printed Blades

SIEMENS

Final rig test delayed due to facility maintenance and upgrades. Testing planned for early November '23. Upgraded control systems will enable more consistent engine operation such that all measurements will possess near identical environments.

Unrestricted © Siemens AG 2023

Task 7 - Data-driven AM Qualification & Production scale-up

SIEMENS

Pilot setup established in Siemens/ Siemens Energy Charlotte AM facility

Unrestricted © Siemens AG 2023

Page 22

- Siemens and its partners are accelerating deployment of AM components into Steam turbines
- Digital tools aid with design optimization for AM, support CAD guided machining/repair of components, reverse engineering along with rapid qualification efforts for AM components.
- Materials have been downselected (X12CrMo materials for blades, 17-4 PH for last stage blade and IN718 for valve components) Design analysis showed that IN718 has better properties than IN625.
 Material property curve comparison with conventional manufacturing underway
- Component manufacturing efforts demonstrated for LPBF, DED, WAAM and Binder jetting process. Anisotropy in samples eliminated Markforged process from further component evaluation.
- NDE of all AM samples underway at EPRI and an NDE report will be issued comparing multiple NDE techniques and their potential for inspection of AM components.
- 1st iteration of AM blade design yielded 0.7% reduced losses in steam path. Multiple iterations are underway to demonstrate further improvement and being design reviewed for field deployment.
- A digital process flow is being implemented to demonstrate end to end AM process for faster data qualification