

Multiphysics Multiscale Simulation Platform for Damage, Environmental Degradation and Life Prediction of CMCs in Extreme Environments

PI: Dr. Aditi Chattopadhyay School for Engineering of Matter, Transport and Energy (SEMTE) Arizona State University, Tempe, AZ

> Major Participant: Dr. Luke Borkowski RTX Technology Research Center (RTRC) East Hartford, CT

> > Annual Review Meeting October 30, 2023

U.S. Department of Energy (DOE) Program Manager: Matthew F. Adams Grant Number: DE-FOA-0001993

- Objectives
- Project Summary
- Research Progress
 - Deep learning framework for automated microstructure characterization & reconstruction
 - Thermomechanical tests for S200H SiC/SiNC
 - Physics-based high-fidelity generalized method of cells microscale simulations
 - Neural network-based reduced order model formulations
- Concluding Remarks & Future Work

Develop a computationally efficient synergistic multiscale framework integrating multiphysics constitutive models with scalespecific experiments for damage assessment & life estimation of **CMCs** in service environment

- Accurate scale-dependent material characterization & uncertainty quantification
- Constitutive modeling of damage, inelasticity, and effects of environmental degradation
- Integration of developed models into commercial finite element (FE) software for CMC component analysis
- **Micrographs** SRVE Thermomechanical testing
- **Closed-loop testing & validation for** model calibration & validation

Methodologies

Synergistic Multiscale Modeling Framework

- Multiscale framework using multiscale generalized method of cells (MSGMC, Liu & Chattopadhyay, 2011) - generalizes two-scale homogenization & localization operations to arbitrary number of scales
- Allows synergistic analysis of woven or braided composite systems
- Model damage & inelasticity at constituent level & capture progression to higher length scales
- Reduced order models for computational efficiency

Multiscale material & scale-dependent architectural variability quantification: i) extract scale-dependent architectural features & defect variability from micrographs; ii) construct <u>statistical representative volume elements (SRVEs)</u> inform multiscale modeling framework

- Meso/macroscale X-ray micro-computed tomography (uCT)
- Microscale confocal microscopy (CM) & scanning electron microscopy (SEM)
- Chemical elemental characterization energy dispersive spectroscopy (EDS)
 - Mesoscale
 - Inter-tow defects;
 - tow size & shape
 - Inter-tow spacing
 - Microscale
 - Intra-tow fiber vol. %
 - Fiber radii & spacing
 - Intra-tow porosity vol. %

Previously - semantic segmentation algorithm using deep learning based framework

Denuded matrix defects: Open and intra-tow porosity

Crack nucleation at free surface

CMC intra-tow porosity

Khafagy, K., Datta, S., & Chattopadhyay, A., Journal of Composite Materials (2021)

Automated Microstructure Characterization & Generation

Deep learning (DL) framework: i) Deep Convolutional Nonlinear Regression for automated feature extraction; ii) Deep Conditional Generative Adversarial Network for SRVE generation

Challenges:

- Unified feature extraction & regression models
- Random generation of synthetic microstructure
- Coupling between variability & generated RVEs generate microstructures based on desired microstructure variability
- Sparsity in micrographs

Advantages

- Semantic segmentation of microstructure characteristic features through CNN layers
- Variability quantification through fully connected regression layers
- Vanilla regression output tensor used to train generative adversarial network (GAN)
- Various GAN architectures used for high-fidelity microstructure reconstruction
- Microstructure-inspired statistically representative volume elements (SRVEs)
- Applicable to other material systems with complex heterogeneous architectures

Automated Microstructure Characterization & Generation

Vanilla Regression NN for CMC Characterization

Spans taxonomy of microstructure analysis: <u>semantic segmentation</u> of microstructure constituents & <u>quantification</u> of microstructure variability

<u>Used previously-developed computer vision (CV) SRVE generation algorithm to</u> train DL-based algorithm & further improve variability quantification accuracy

- Optimized vanilla regression variability prediction show high coefficient of determination (R^2) with respect to the ground truth
- Deep vanilla regression captured fiber and porosity radial correlation functions overall trend

Multi Deep NN for CMC SRVE Generation

<u>Wasserstein Generative Adversarial Network (WGAN) Outcomes</u>:

- Critic network learns microstructure convolution filters to distinguish between actual micrographs and generated SRVEs by maximizing the Wasserstein loss
- Generator network produces SRVEs which mimic the actual micrographs, thus minimizing the Earth-Mover-Distance (EMD) between the two distributions

SRVE Generation and Training Evaluation

WGAN showed enhanced SRVE quality generation with microstructure variability compared to traditional GAN frameworks due to better gradient estimations and stable objective function

S200H SiC/SiNC Quasi-Static Tests

- Nonlinear behavior is due to large pores and cracks caused by PIP manufacturing process; accelerating damage growth in the composite
- Tensile strength results at 1200°C are in good agreement with literature
- Drastic decrease in tensile strength at 1200°C due to higher activation energy for matrix microcracks

S200H SiC/SiNC Creep-Fatigue and Residual Strength Tests

- Large difference in strain between repeated tests at 50% and 40% Stress Levels
- Strain rates for repeated tests at 50%, 40% and 30% stress levels match
- Stiffness decreased due to embrittlement caused by oxidation
- Significant decrease in strength and strain to failure upon creep-fatigue exposure

- Material characterization using SEM and EDS performed after creep-fatigue testing and residual strength testing
- Damage due to manufacturing induced defects depicted in sample fracture surface
- SiNC matrix oxidizes into glassy silica phase causing embrittlement

Key Features

- Modeling CMC viscoplasticity and damage induced inelasticity at elevated temperature
- Capturing the CMCs global mechanical response due to damage mechanisms in each constituents (fiber and matrix)
- Model training on high-fidelity microstructure representation to account for microstructure features and variability effects
 - Capturing the main stages of creep strain behavior
 - Enforcing physics-based constrains through loss function regularization
 - Microscale surrogate model training on stress relaxation and creep testing scenarios with damage

20

40

60

80

Stress Relaxation for S200H CMC at 1300°C: Localized Response

20

60

20

40

60

Applied Strain

- Intratow defects induced localized stress and viscoplastic strain around fiber surfaces
- Viscoplastic strain mismatch between SiNC matrix and Hi-Nicalon fiber due to different stress state and inelasticity activation energy

•

 Localized total strain near porosity; indicating defects diffusion along fiber surfaces during stress relaxation

Impact of Porosity on Inelastic Response of S200H CMC at 1300°C

- S200H exhibits inelastic strain mismatch during stress relaxation simulations
- Fiber stress rapidly drops and approaches a constant creep strain rate
- Inelastic strain in fiber increases with porosity as a result of stress localization along fiber surfaces

Physics-Informed Machine Learning CMC Surrogate Model

Surrogate model developed and extended to effectively predict response of woven SiC/SiC with microstructural variability

RNN-based, physicsinformed surrogate model

Update gate (z_c)

Reset gate (r,)

New gate (n,

Parity plot – with and without physics-informed constraints

Prediction speedup

Model	Runtime	Speedup
	(s)	(times)
Numerical	116.41	NA
Surrogate (CPU)	2.22e-3	5.2e4
Surrogate (GPU)	2.08e-4	5.6e5

*Borkowski, L., Skinner, T., & Chattopadhyay, A. (2023). Woven ceramic matrix composite surrogate model based on physics-informed recurrent neural network. *Composite Structures*.

- Variability quantification and generation of microstructure morphology
 - Deep learning (DL) model for microstructure features quantification
 - Microstructure-inspired representative volume element generation for microscale constitutive modeling
- Thermomechanical testing: Quasistatic high temperature and creepfatigue
 - S200H SiC/SiNC showed significant nonlinearity due to porosity and shrinkage crack induced through manufacturing PIP process
 - Matrix microcracking and fiber brittle fracture control SiC/SiNC failure at elevated temperatures
 - Silica formation observed in SiNC matrix above 800°C
- High-fidelity generalized methods of cells captured viscoplastic and damage mechanisms at the intratow level
 - Analyzed the impact of S200H CMC defects on stress relaxation and localized inelastic response

- Computationally efficient deep learning-based surrogate modeling training based on high-fidelity simulations
- Dwell-fatigue modeling through coupling damage, viscoplastic creep and oxidation models
- Extension of oxidation model to include matrix reactions, fusing, crack sealing & refine formulation for enforcing surface-based reactions
- Fracture mechanics-based damage model development with temperature effects to capture matrix microcracking activation at elevated temperatures

Program Manager: Matthew F. Adams

- Dr. Patcharin Burke *National Energy Technology Laboratory*
- Dr. Edgar Lara-Curzio Oak Ridge National Laboratory
- Dr. Anindya Ghoshal Army Research Lab
- Dr. Ojard, Dr. Kumar, and Dr. G.V. Srinivasan *RTRC*
- Dr. Amjad Almansour and Dr. Goldberg– NASA Glenn Research Center

<u>Research Contributions</u>: Luke Borkowski – PhD (RTX Technology Research Center) Mohamed Hamza – PhD Student Rayva Ranade – MSc Student Khaled Khafagy – PhD (Mechanical Core Competency, Intel, Oregon) Jacob Schichtel – PhD (Mechanical Core Competency, Intel, Chandler) Christopher Sorini – PhD (SWRI)

Backup Slides

Test Setup for Intermediate Temperature Quasi-Static Tensile Test

Test setup for 800°C quasi-static tensile test; (a) thermocouples attached to sample, (b) furnace heating up to desired temperature with thermocouples plugged in to reader, (c) tensile test being performed

S200H SiC/SiNC Creep-Fatigue Oxidation EDS Images (800°C)

ASU Reformulated Matrix Damage Model

Porosity growth

damage variable

Modeling of brittle damage mechanism in SiC/SiC CMC constituents (the matrix and fibers)

The matrix modulus degradation can be described as:

 $E_m^* = (1 - (D^p + D^c))E_m$

Damage variables can be expressed as:

 $\dot{D^c} = \frac{\pi^2}{10} (1+\nu)(5-4\nu) \frac{N}{\nu} L^2 \dot{L}$, \checkmark Microcracking damage variable

 $\dot{D^p} = a(1-D^p)\gamma\varepsilon^V$,

$$\gamma = \frac{1}{2} \left(1 - D_p \right) \Gamma_P F_{dil}^{-1} G \left(F_{dist} \cdot I - \frac{9}{F_{dist}^{-1} \cdot I} \right)$$
$$\Gamma_P = \Gamma_{Po} \frac{3G}{\sigma_{eqv}} \left(\frac{\langle \sigma_{eqv} - \sigma_Y \rangle}{\sigma_{Yo}} \right)^2$$

Computational parametric study to investigate the influence of voids and fiber VF on the damage mechanism

$$\dot{L}_{c} = \frac{C_{R}}{\alpha} \left(\frac{K_{I} - K_{IC}}{K_{I} - \frac{K_{IC}}{2}} \right)^{\gamma} \quad \text{if } K_{I} \ge K_{IC}$$

Crack

$$\frac{K_I - K_{IC}}{K_{IC}} \Big)^{\gamma} \quad \text{if } K_I \ge L$$

Microstructure Statistics Using Point-

Correlation

- Computed the probability density associated with finding specific local states at two ordered material points for a given microstructure
- Statistical and physical descriptors preprocessing for microstructure inspired RVEs generation

Mesh Generation for High-fidelity Generalized Methods of Cells (HFGMC)

Results: Pixel-Based Information for composite ML-based images.

- Re-constructed DL-based images for C/SiNC and SiC/SiNC CMCs
- Artifacts of ML-based images in terms of fiber distribution and shape will be avoided through further optimization and tuning of the deep neural network