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Overview

▪ Objectives

▪ Project Summary

▪ Research Progress

- Deep learning framework for automated microstructure 

characterization & reconstruction

- Thermomechanical tests for S200H SiC/SiNC

- Physics-based high-fidelity generalized method of cells 

microscale simulations

- Neural network-based reduced order model 

formulations

▪ Concluding Remarks & Future Work
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Objectives

▪ Accurate scale-dependent material 

characterization & uncertainty 

quantification

▪ Constitutive modeling of damage, 

inelasticity, and effects of 

environmental degradation

▪ Integration of developed models into 

commercial finite element (FE) 

software for CMC component analysis

▪ Closed-loop testing & validation for 

model calibration & validation

Develop a computationally efficient synergistic multiscale 

framework integrating multiphysics constitutive models with scale-

specific experiments for damage assessment & life estimation of 

CMCs in service environment

Micrographs

SRVE

Thermomechanical 

testing

*Khafagy, K., Datta, S., & Chattopadhyay, A., Journal of Composite Materials (2021)



Previous year’s work: 

▪ Scale-dependent variability characterization of C/SiNC and 

SiC/SiNC CMCs via microscopy & X-ray micro-computed 

tomography (uCT) 

▪ Image processing algorithm for feature identification and 

generation of stochastic representative volume element 

(SRVE)

▪ Machine-learning (ML)-based techniques to facilitate image 

segmentation, scale-dependent variability quantification, and 

SRVE generation

▪ High fidelity damage modeling to investigate effects of 

microporosity and residual stress in SiC/SiC composites

▪ Quasi-static tensile testing of 8HS woven SiC/SiNC CMC with 

in-situ digital image correlation (DIC)

▪ Coupled oxidation and damage model

Current work: 

▪ Creep-fatigue testing and microstructure assessment for 

woven SiC/SiNC and C/SiNC CMC

▪ ML-based SRVE generation and implementation for high 

fidelity models

▪ Physics-informed neural-network (NN)-based surrogate 

model to emulate multiscale methodology

Project Summary
AccomplishmentsMethodologies

Research Team
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Multiscale framework integrating scale-specific multiphysics 

constitutive models with experimental characterization 

▪Dr. Aditi Chattopadhyay – PI

▪Dr. Luke Borkowski (RTRC)–Major Participant

▪Mohamed Hamza – PhD Student 

▪Rayva Ranade – MSc Student

▪Christopher Sorini – PhD Student/Dean’s Scholar

▪Khaled Khafagy – PhD Student

▪Jacob Schichtel – NDSEG fellow, no cost to the 

grant

Milestone
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Synergistic Multiscale Modeling 

Framework

▪ Multiscale framework using multiscale generalized method of cells (MSGMC, Liu 

& Chattopadhyay, 2011) - generalizes two-scale homogenization & localization 

operations to arbitrary number of scales

▪ Allows synergistic analysis of woven or braided composite systems

▪ Model damage & inelasticity at constituent level & capture progression to higher 

length scales

▪ Reduced order models for computational efficiency

Homogenization 
Localization



Scale-dependent Variability

Multiscale material & scale-dependent architectural variability quantification: 

i) extract scale-dependent architectural features & defect variability from 

micrographs; ii) construct statistical representative volume elements (SRVEs) 

inform multiscale modeling framework 

▪ Meso/macroscale - X-ray micro-computed tomography (uCT)

▪ Microscale - confocal microscopy (CM) & scanning electron microscopy 

(SEM)

▪ Chemical elemental characterization - energy dispersive spectroscopy (EDS)

▪ Mesoscale

- Inter-tow defects; 

- tow size & shape

- Inter-tow spacing

▪ Microscale

- Intra-tow fiber vol. %

- Fiber radii & spacing

- Intra-tow porosity vol. %

6
Khafagy, K., Datta, S., & Chattopadhyay, A., Journal of Composite Materials (2021)

Denuded matrix defects:

Open and intra-tow porosity
Crack nucleation at free              

surface

CMC intra-tow porosity

Previously - semantic segmentation 

algorithm using deep learning based

framework
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Automated Microstructure Characterization & 

Generation
Deep learning (DL) framework: i) Deep Convolutional Nonlinear Regression 

for automated feature extraction; ii) Deep Conditional Generative Adversarial 

Network for SRVE generation

Challenges: 

▪ Unified feature extraction & regression models

▪ Random generation of synthetic microstructure

▪ Coupling between variability & generated RVEs – generate microstructures 

based on desired microstructure variability

▪ Sparsity in micrographs

Advantages

• Semantic segmentation of microstructure characteristic features through

CNN layers

• Variability quantification through fully connected regression layers

• Vanilla regression output tensor used to train generative adversarial network

(GAN)

• Various GAN architectures used for high-fidelity microstructure

reconstruction

• Microstructure-inspired statistically representative volume elements (SRVEs)

• Applicable to other material systems with complex heterogeneous

architectures



Automated Microstructure Characterization & 

Generation
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Physical Descriptors

• Fiber volume fraction

• Mean fiber radius

• Porosity fraction

Statistical Descriptors:

• Two-point correlation

Statistical 

Representation

Vanilla Regression NN for CMC Characterization

Spans taxonomy of microstructure analysis: semantic segmentation of 

microstructure constituents & quantification of microstructure variability
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Vanilla Regression Training

Computer-vision training 

microstructure

Deep-learning Segmented

microstructure

Loss function

Minimization

• Optimized vanilla regression variability prediction show high coefficient of determination

(𝑹𝟐) with respect to the ground truth

• Deep vanilla regression captured fiber and porosity radial correlation functions overall trend

Used previously-developed computer vision (CV) SRVE generation algorithm to 

train DL-based algorithm & further improve variability quantification accuracy

Porosity characterization

R2=0.98
Fiber characterization

𝐼𝑃 𝑧 =

1 𝑖𝑓 𝑧 ∈ 𝑝ℎ𝑎𝑠𝑒 𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠2
𝑖 𝑟 = < 𝐼𝑝 𝑥 , 𝐼𝑝 𝑥 + 𝑟 >

Two-point Correlation
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Multi Deep NN for CMC SRVE Generation

C(𝑿) ≡ Deep 

Convolutional Critic 

NN

Critic Score:
𝑌 = 𝐶(𝑿, 𝑿𝒈𝒆𝒏)
𝑌𝜖 ℝ 𝑖𝑛 [−∞,∞]

G(Z) ≡ Deep 

Convolutional 

Generator NN

Microstructure

(𝑋𝑖𝑗𝑘𝑙)

i: Sample Size

j: Image Depth (i.e. Grayscale)

k: Image Height

l: Image Width

Generated Microstructure

(𝑮 𝒁 = 𝑿𝒈𝒆𝒏)

𝒎𝒊𝒏𝑮 𝒎𝒂𝒙𝑪 𝔼 𝐶 𝑿 − 𝔼 𝐶 𝐺 𝒁

Update 𝜽𝑮 via gradients

Update 𝜽𝑪 via gradients

𝑋𝑔𝑒𝑛 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑋

Random Gaussian Noise (Z)

𝜽𝑪: Critic parameters

𝜽𝑮: Generator parameters

Wasserstein Generative Adversarial Network (WGAN) Outcomes: 

▪ Critic network learns microstructure convolution filters to distinguish between 

actual micrographs and generated SRVEs by maximizing the Wasserstein loss

▪ Generator network produces SRVEs which mimic the actual micrographs, thus 

minimizing the Earth-Mover-Distance (EMD) between the two distributions

Earth-Mover-Distance:

Distance between the real and

generated distributions

Latent Space



11

SRVE Generation and Training Evaluation 

WGAN showed enhanced SRVE quality generation with microstructure variability

compared to traditional GAN frameworks due to better gradient estimations and stable

objective function

SRVE Evolution Across Model Training Optimized Generated SRVE 

Penalty Constraint
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S200H SiC/SiNC Quasi-Static Tests

• Nonlinear behavior is due to large pores and cracks caused by PIP 

manufacturing process; accelerating damage growth in the composite

• Tensile strength results at 1200oC are in good agreement with literature

• Drastic decrease in tensile strength at 1200oC due to higher activation energy for 

matrix microcracks 

800oC

UTS: 451.2897 Mpa

Modulus: 128.47 Gpa

Failure Strain: 0.541%

Room Temperature (RT)

UTS: 487.2917 Mpa

Modulus: 135.39 Gpa

Failure Strain: 0.541%

1200oC

UTS: 336.5265 Mpa

Modulus: 110.83 GPa

Failure Strain: 0.448%

Confocal Micrographs of Fracture Surface 

RT

800oC



S200H SiC/SiNC Creep-Fatigue and Residual 

Strength Tests
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• Large difference in strain between repeated tests at 50% and 40% Stress Levels

• Strain rates for repeated tests at 50%, 40% and 30% stress levels match

• Stiffness decreased due to embrittlement caused by oxidation

• Significant decrease in strength and strain to failure upon creep-fatigue exposure



S200H SiC/SiNC Fracture Post-Residual Strength (800oC) 
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• Material characterization using SEM and EDS performed after creep-fatigue testing

and residual strength testing

• Damage due to manufacturing induced defects depicted in sample fracture surface

• SiNC matrix oxidizes into glassy silica phase causing embrittlement

Cross section of fracture surface Void in matrix leaving exposed fibers
Manufacturing-induced 

damage on fracture surface

Fracture damage located close to 

sample surface
Silica formation on fracture surface



Physics-based High-fidelity Modeling 

of CMCs
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▪ Modeling CMC viscoplasticity and damage induced 

inelasticity at elevated temperature

▪ Capturing the CMCs global mechanical response due 

to damage mechanisms in each constituents (fiber and 

matrix)

▪ Model training on high-fidelity microstructure 

representation to account for microstructure features 

and variability effects

▪ Capturing the main stages of creep strain behavior

▪ Enforcing physics-based constrains through loss 

function regularization

▪ Microscale surrogate model training on stress 

relaxation and creep testing scenarios with damage

Key Features
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Stress Relaxation for S200H CMC at 1300oC: 

Localized Response

1% defect VF 2% defect VF 4% defect VF

• Intratow defects 

induced localized 

stress and viscoplastic

strain around fiber 

surfaces

• Viscoplastic strain 

mismatch between 

SiNC matrix and Hi-

Nicalon fiber due to 

different stress state 

and inelasticity 

activation energy

• Localized total strain 

near porosity; 

indicating defects 

diffusion along fiber 

surfaces during stress 

relaxation

Total Longitudinal  Strain:

Inelastic Longitudinal Strain:

Cauchy Longitudinal Stress:

Applied Strain



Impact of Porosity on Inelastic Response of 

S200H CMC at 1300oC
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• S200H exhibits inelastic strain mismatch during stress relaxation simulations

• Fiber stress rapidly drops and approaches a constant creep strain rate

• Inelastic strain in fiber increases with porosity as a result of stress localization along fiber

surfaces

Pristine

Pristine



Physics-Informed Machine Learning CMC 

Surrogate Model
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Surrogate model developed and extended to effectively predict response of woven 

SiC/SiC with microstructural variability

Stress vs. strain

*Borkowski, L., Skinner, T., & Chattopadhyay, A. (2023). Woven 

ceramic matrix composite surrogate model based on physics-informed 

recurrent neural network. Composite Structures.

Parity plot – with and without 

physics-informed constraints

Tangent modulus vs. strain Prediction speedup



Concluding Remarks
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▪ Variability quantification and generation of microstructure morphology

• Deep learning (DL) model for microstructure features quantification

• Microstructure-inspired representative volume element generation 

for microscale constitutive modeling

▪ Thermomechanical testing: Quasistatic high temperature and creep-

fatigue

• S200H SiC/SiNC showed significant nonlinearity due to porosity 

and shrinkage crack induced through manufacturing PIP process

• Matrix microcracking and fiber brittle fracture control SiC/SiNC

failure at elevated temperatures

• Silica formation observed in SiNC matrix above 800oC

▪ High-fidelity generalized methods of cells captured viscoplastic and 

damage mechanisms at the intratow level

• Analyzed the impact of S200H CMC defects on stress relaxation 

and localized inelastic response



Future Work

▪ Computationally efficient deep learning-based surrogate 

modeling training based on high-fidelity simulations

▪ Dwell-fatigue modeling through coupling damage, 

viscoplastic creep and oxidation models

▪ Extension of oxidation model to include matrix reactions, 

fusing, crack sealing & refine formulation for enforcing 

surface-based reactions

▪ Fracture mechanics-based damage model development 

with temperature effects to capture matrix microcracking 

activation at elevated temperatures 

20
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Test Setup for Intermediate Temperature 

Quasi-Static Tensile Test
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Test setup for 800oC quasi-static tensile test; (a) thermocouples attached to 

sample, (b) furnace heating up to desired temperature with thermocouples 

plugged in to reader, (c) tensile test being performed

(a) (b) (c)



S200H SiC/SiNC Creep-Fatigue Oxidation EDS 

Images (800oC)
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• Weight percentages of 

undamaged SiNC matrix:

• Weight percentages of portion 

of sample shown to the left:



Reformulated Matrix Damage Model
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Modeling of brittle damage mechanism in SiC/SiC CMC constituents 

(the matrix and fibers)

▪ The matrix modulus degradation can be described as:

▪ Damage variables can be expressed as: 

▪ Computational parametric study to investigate the influence of voids 

and fiber VF on the damage mechanism 

ሶ𝐷𝑐 =
𝜋2

10
1 + 𝜈 5 − 4𝜈

𝑁

𝑉
𝐿2 ሶ𝐿,

Crack 

kinetics

ሶ𝐷𝑝 = 𝑎 1 − 𝐷𝑝 𝛾𝜀𝑉 ,

ሶ𝐿𝑐=
𝐶𝑅
𝛼

𝐾𝐼 − 𝐾𝐼𝐶

𝐾𝐼 −
𝐾𝐼𝐶
2

𝛾𝐸𝑚
∗ = 1 − (𝐷𝑝 + 𝐷𝑐) 𝐸𝑚

Porosity growth 

damage variable

Microcracking 

damage variable

𝛾 =
1

2
1 − 𝐷𝑝 Γ𝑃 𝐹𝒅𝒊𝒍

−1 𝐺 𝑭𝒅𝒊𝒔𝒕 . 𝑰 −
9

𝑭𝒅𝒊𝒔𝒕
−1 . 𝑰

Γ𝑃 = Γ𝑃𝑜
3𝐺

𝜎𝑒𝑞𝑣

𝜎𝑒𝑞𝑣 − 𝜎𝑌
𝜎𝑌𝑜

2

if 𝐾𝐼 ≥ 𝐾𝐼𝐶
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Autocorrelation Fiber Autocorrelation Porosity Cross-Correlation

Pixel Distance Pixel Distance Pixel Distance
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Microstructure Statistics Using Point-

Correlation

• Computed the probability density associated with finding specific local states

at two ordered material points for a given microstructure

• Statistical and physical descriptors preprocessing for microstructure inspired

RVEs generation



Mesh Generation for High-fidelity Generalized 

Methods of Cells (HFGMC)
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Results: Pixel-Based Information for composite ML-based images.   

• Re-constructed DL-based images for C/SiNC and SiC/SiNC CMCs

• Artifacts of ML-based images in terms of fiber distribution and shape will

be avoided through further optimization and tuning of the deep neural

network

• Porosity • Matrix • Fiber

Y-Z PlaneX-Z Plane
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