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Background - Pressure Gain Combustion
Rotating Detonation Engines

• Bulk axial flow with circumferential 
detonation wave

• Detonation wave, once initiated, is self-
sustained.

• No moving parts – No complex valving
required at the inlet compared to PDE’s

• Potential for low NOx

1. Wolanski, P., Proc. Comb. Institute, 2013

(Ref 1)

Motivation
• RDEs offer significant efficiency and COE benefit: Internal 

systems models suggest 4.9% increase in GT Efficiency 

(LHV) and 1.8% increase in Net Plant Efficiency (NGCC 

with H-Class RDE-GT Hybrid).

• Alternate and additive pathway to efficiency improvement.

• Creates a new class of  machine reducing COE. PGC

Gas Turbine RDE Combustor
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Problem
• NOx emissions from RDEs is not well understood and very little data is available.

• Most RDE CFD modeling approaches ignore turbulence-chemistry interactions, and many 
ignore viscous effects. Deflagrative burning not predicted well.

Approach
• Experimentally characterize NOx emissions from a water-cooled RDE over a range of  

equivalence ratios and back-pressures.

• Assess the ability of  a zero-dimensional Partially Stirred Reactor (PaSR) model with 
detailed chemical kinetics to capture the physics of  a Rotating Detonation Engine.

• Validate the PaSR model using new experimental data.

Background – NOx Emissions
RDE NOx Emissions
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• Maximum back-pressure of  20 atm.
• Typical test time of  20-30 sec.
• Thermal equilibrium reached within 10 sec.
• High-speed pressure, OH*, Ions, Imaging, Calorimetry and steady-state gas sampling (O2, NOx).

NETL Water-Cooled RDE
Hydrogen-Air

ID   = 128.5 mm

OD = 148.8 mm

Pintle Style Injector 

(120 x 0.75mm 

holes)

Typical Operating Envelope
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• NOx emissions increase with increasing equivalence ratio.

• NOx also increases with pressure, consistent with constant pressure combustion.

• Single digit NOx observed over range of  operating conditions.

Experimental Results
NOx Emissions Gas Sampling 

Cart
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• Hybrid mesh with polyhedral cells in manifolding and injectors and hex cells in annulus.

• ANSYS Fluent pressure-based solver. Mass flow inlets, pressure outlet and 300K walls.

• LES with BCD for momentum, 2nd upwinding for scalars and 1st Euler in time. Derived from 1D 
detonation simulations.

• Sandiego H2/Air mechanism with nitrogen chemistry.

Modeling Approach
ANSYS Fluent

air

inlet

Dx (mm)
manifold injector combustor diffuser

3x fuel

inlets

Ptot (Pa)

Ptot

Dx
Cross-section of mesh size

Nominal 0.5 mm mesh
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• Ignoring turbulence-chemistry interactions results in severe over prediction of  NOx 
emissions, even with added dissipation to prevent numerical overshoot/oscillations at 
detonation wave.

Early Modeling Results
LES with No Combustion Model
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• FLUENT LES, 10M cells (0.5 mm)
• 1st ddt to prevent overshoot
• SanDiego mechanism 

• 19 species / 64 reactions (H2/Air)
• Includes thermal, NNH, NH3, N2O and 

NO2 chemistry)

Case f Fuel 
(kg/s)

Air 
(kg/s)

T fuel  

(K)
Tair

(K)
Pback

(kPa)

Run 4 .573 .00973 .5807 333 432 130

Run 12 .725 .01191 .5621 331 431 133

Run 15 .894 .01362 .5218 330 432 131
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• The PaSR model assumes that each computational cell is comprised of  both reacting 
and non-reacting zones where mass is exchanged between the two through turbulent 
mixing.

• Source term modification through ratio of  turbulent mixing to chemical reaction 
time scales.

• Detailed chemistry with stiff  ODE solver and LES approach.

Partially Stirred Reactor Model
Developed by Magnussen, Chomiak and others…
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LES Turbulent mixing time

Chemical reaction time

Partially Stirred Reactor
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i= major species

Cmix assumed to be 0.25
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PaSR Model Results
NO Formation Run 15, f=0.894
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• No combustion model results in 4x over-prediction of  NO emissions.

• PaSR model significantly reduces NO formation

• Reduction of  peak reaction rates and temperatures through kappa
𝜏𝑚𝑖𝑥 = 𝐶𝑚𝑖𝑥

𝑘

𝜀
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Calculation of Mixing Timescale
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Scalar Variance: Scalar Dissipation:

• Transport equations are solved for scalar variance and scalar dissipation rate.

• Accounts for non-equilibrium production and destruction of  scalar variance 
and dissipation.
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Transported Timescale Approach
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Wave Speed Results
Hydrogen-Air

Case f Wave 
Speed 

Experim
ental 
(m/s)

Wave 
Speed No

Comb 
Model
(m/s)

Wave 
Speed 
PaSR

Model
(m/s)

Run 4 .573 1419 1603 1431

Run 12 .725 1561 1605 1469

Run 15 .894 1540 1683 1553

• Wave speed prediction generally improved with 
PaSR model

• Two waves observed at f=.725 and f=.894 and 
two/three waves at f=.573
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• PaSR model reduces deflagrative (parasitic) combustion in fill region.

• Peak pressures and temperatures also reduced.

Temperature, Pressure, Reaction Rate
Contours through mid-plane, run12, f = .725

PaSR

Model

No

Model
P (Pa)T(K)

Log10 (RR)

(J/m3/s)
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Cutting Plane at Z=5 mm
Single Snapshots

P (Pa)

T(K)

Run 4, f=0.573 Run 12, f=0.725 Run 15, f=0.894

Temperature

Pressure
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• Peak temperature reduced by almost 400 K.

• Fine scale mass fraction in NO formation region between 0.2 
and 0.4.

• Reactor residence time t*, order of  magnitude longer than 
solver time step (dt=1e-7s).

Line Plot Through One Wave
Line plots through one wave, run12, f = .725
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• Heat release and NO formation rate binned by pressure or temperature 
through entire domain and averaged in time.

• Shows shift to lower pressures and temperatures.

Histogram Analysis
NO formation rate
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• Current treatment of  timescale results in significant improvement in 
NO prediction.

• Bulk of  NO is formed in the detonation region.

Integrated NO Emissions
Averaged in time and space at domain exit
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• Ignoring turbulence-chemistry interaction results in significant (4x) 
over-prediction of  NOx while the PaSR model seems to improve results.
• Constant Cmix approach likely contributing to limitations.

• Dynamic approach using transport equations for scalar variance and dissipation 
rate to determine mixing timescale results in significant improvement.

• Bulk of  NOx formation occurs in or directly behind the detonation 
wave.

• NOx emissions very reasonable, some single digit, over wide range of  
equivalence ratios and up to 4 atm back pressure.

Conclusions
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Backup Slides
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• PaSR model reduces deflagrative (parasitic) combustion in fill region.

• Peak pressures and temperatures also reduced.

Temperature Contours
Contours through mid-plane

T(K)

Run 4, f=0.573 Run 12, f=0.725 Run 15, f=0.894

PaSR

No

Model
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NOx Formation

PaSRNo Model
RR NO

(kg/m3/s)

NO mole

fraction

Run 15, f=0.894
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