

Demonstration of a Gas Turbine-Scale RDC Integrated with Compressor and Turbine Components at 7FA Cycle Conditions

GE Team

Arin Cross, Danny Depperschmidt, Luke D'Aquila, Tom Dyson, Skye Elliott, Tommy Genova, Geoff Manganaro, Sarah Monahan, Kapil Singh, Lisa Tang, and Tom Vandeputte Nov 1, 2023

"This material is based upon work supported by the Department of Energy under Award Number DE-FE00032170."

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Agenda

- Overview and Status
- Demonstration of Operability and Feasibility along F-Class Cycle
- NCSU : Total Pressure and Temperature Measurements
- CFD : Rig Design and RDC-Turbine Interaction
- UM : Detonation Study for Interaction
- Summary and Next Steps

- Overview and Status

An 48-month, \$8.75M project to develop and demonstrate rotating detonation combustion (RDC) technology

in an integrated gas turbine system.

Project Objective(s): Develop low-loss rotating detonation combustor, integrate with upstream and downstream turbomachinery components and verify overall systems performance at F-class turbine conditions.

Program Overview

Demonstration of a Gas Turbine-Scale RDC Integrated with Compressor and Turbine Components at 7FA Cycle Conditions (2022 – 2026)

Project Team GE Research Deep expertise: • RDC and gas turbine design • Gas turbine testing • Compressor/diffuser aero • Turbine aero • Cooling design, heat transfer	•••••	<u>Project Deliverables</u> Low-loss RDC design for turbine integration Experimental demos of compressor and turbine integration Turbine and compressor component performance estimates in integrated system from detailed test and measurement RDC-integrated GT performance estimates	/						
Combustion and Aero MUNICHIGAN Prof. Raman Measurements and Diagnostics UCF		Relevant Prior Work Air-cooled RDC demonstration							
Prof. Vasu Georgia Prof. Steinberg Prof. Steinberg Nc statte UNIVERSITY Prof. Narayanaswamy		 Preliminary gas turbine integration design RDC performance estimates USAF RDC Program 		Technical Approach • Design air-cooled RDC • Test with Nat-gas H2 mixtures • Integrate with compressor and turbine • Test integrated system • Verify performance based on high-fidelity data	Technical Challenges • RDC operation over large P,T range • Low-loss RDC inlet design • Fuel flexible operation • Unsteady flow effects on compressor and turbine performance				

Program Schedule and Status

 \checkmark

	Text1	- % Complete -	Task Name	Duration 🚽	Start	Finish	Half 2, 2022 J S N	Half 1, 2023	Half 2, 2023	Half 1, 2024	Half 2, 2024	Half 1, 2025	Half 2, 2025	Half 1,	2026 Half
0	Task	0%	<pre> GRC-DOE_RDC </pre>	1044 days	Sat 10/1/22	Wed 9/30/26	-								
1		0%	▲ Appendix L : AOI 12	1044 days	Sat 10/1/22	Wed 9/30/26	-								
2	1	100%	4 Task 1 : Project Management and Planning	1044 days	Sat 10/1/22	Wed 9/30/26	-								
3		100%	Submission of Project Management Plan to DOE	0 days	Mon 10/31/22	Mon 10/31/22	*		PMP and	TMP Su	ibmitted	to DOE			
4		100%	Submission of Technology Maturation Plan to DOE	0 days	Fri 12/30/22	Fri 12/30/22	•								
5	2	0%	⁴ Task 2 : Low-Loss RDC Feasibility and Operability along 7FA Op Line	262 days	Sat 10/1/22	Sat 9/30/23	•								
6		100%	Feasibility and Operability along GT OPLINE Demonstrated	0 days	Sun 4/30/23	Sun 4/30/23		*		Low dP	Feasibi	ity & Op	erability	y Demo	onstrate
7		50%	Demonstration of Low-Loss RDC Feasibility and Operability along 7FA Op Line	0 days	Sat 9/30/23	Sat 9/30/23			•						
8	3	0%	⁴ Task 3 : Development of Design Rules, Scaling Laws, and Validated Tools for RDC	369 days	Wed 2/1/23	Sun 6/30/24		•			•				
9		30%	First Set of Experiments for Design Rules and Scaling Laws Complete	0 days	Wed 2/28/24	Wed 2/28/24				*	R	ig HW B	eing Fa	bricate	ed
10		0%	Development of Design Rules, Scaling Laws, and Validated Tools for RDC Complete	0 days	Sun 6/30/24	Sun 6/30/24					•				
11	4	0%	4 Task 4 : Demonstration of Thermal Steady State RDC	438 days	Mon 5/1/23	Tue 12/31/24									
12		20%	Demonstration of Thermal SS RDC Operation along 7FA Op Line	0 days	Tue 12/31/24	Tue 12/31/24						• 🕑 🛙	Rig Laye	out in F	Progres
13	5	0%	⁴ Task 5 : Demonstration of Upstream and Downstream Turbomachinery Boundary Conditions Integrated RDC along 7FA Op Line	1045 days	Sat 10/1/22	Wed 9/30/26	•								
14		75%	Preliminary Assessment of BC Intergrated RDC Complete	0 days	Tue 9/30/25	Tue 9/30/25		of A Con	nbustor A	rchitect	ure Stud	y Compl	eted 🔸 🂽		
15		0%	Performance Evaluation of BC Integrated RDC Complete	0 days	Tue 3/31/26	Tue 3/31/26								•	•
16		0%	Demonstration of Upstream and Downstream Turbomachinery Boundary Conditions Integrated RDC along 7FA Op Line	0 days	Wed 9/30/26	Wed 9/30/26									
17	6	0%	Task 6 : System Integration and Component Performance	2 1045 days	Sat 10/1/22	Wed 9/30/26	•								
18		0%	Report on System Integration and Component Performance	0 days	Wed 9/30/26	Wed 9/30/26									

GE Aerospace

5

Demonstration of Operability and Feasibility along F-Class Cycle

GE High Pressure and Temperature RDC Rig

Facility can reach all operating conditions for 7FA Cycle Max 7F Cycle Operating Conditions : 800 F, 250 psi

GE Public Information

GE High Pressure and Temperature RDC Rig

Radial Airflow Design

0 0

Demonstrated Detonation along 7FA Cycle

- Test durations are typically 2-4 seconds
- 2 different hardware configurations
- Various equivalence ratios
- "Detonation" includes sustained detonation only
- Sustained detonation demonstrated over full range of cycle

Demonstrated Successful Detonation Along F-Class Cycle

GE RDC Rig Air Injector Pressure Drop

Successful Detonation at Actual Gas Turbine dP/P

GE Public Information

Representative H₂-Detonation Pressure Signature

> 80% of CJ speed demonstrated

GE Public Information

NCSU : Total Pressure and Total Temperature Measurements

GE Optical Access Rig for NCSU Measurements

- CFD : Rig Design & RDC-Turbine Integration

CFD for Unmixedness Studies over Design Parameter Range

To determine unmixedness:

- Generate axial planes.
- Calculate Bilger mixture fraction* β, variance, average of mixture fraction, and average of variance squared on planes.

$$\beta = \sum_{l=1}^{N_e} \gamma_l Z_l = \sum_{l=1}^{N_e} \gamma_l \sum_{i=1}^{N_s} \frac{\alpha_{l,i} W_l Y_i}{W_i} \qquad \qquad U = \frac{\overline{\beta''^2}}{\overline{\beta} (1 - \overline{\beta})}$$

Bilger mixture fraction:

- γ_l = weighting factors for individual elements
- $\alpha_{l,i}$ = number of element *l* in species *i*
- W_i = atomic weight of element *i* in species *i*
- W_i = atomic weight of species I
- Y_i = mass fraction of species i
- The lower the U value, the better the fuel-air mixing.
 Assess impact of different features & enable design down-selection.

GT Lightoff 0.012 large air gap small air gap 0.01 • med. air gap, base mixing length **Nunixedness** 0.006 0.004 med. air gap, mixing length 1 • med. air gap, mixing length 2 • med. air gap, mixing length 3 • med. air gap, mix element var1 • med. air gap, mix element var2 0.002 0 axial distance from mixing elements **GT Max Condition** 0.012 large air gap small air gap 0.01 • med. air gap, base mixing length **N unixeques** 0.008 0.006 0.004 • med. air gap, mixing length 1 • med. air gap, mixing length 2 • med. air gap, mixing length 3 med. air gap, mix element var1 med. air gap, mix element var2 0.002 0 axial distance from mixing elements

^{*}Bilger, R. W., and Starner, S. H., and Kee, R. J., On reduced mechanisms for methane air combustion in nonpremixed flames, Combustion and Flame, 80, 2, 135–149, 1990.

Example of Reacting Flow CFD for H₂ RDC

CFD provides insights into what geometric or operating parameters can be examined for detonation feasibility.
 RDC CFD yields boundary conditions for modeling flow path downstream of RDC toward turbomachinery.

GE Aerospace

Aero Modeling for Downstream Flowpath

- Identify major aero performance concerns in downstream flowpath
- Steady-state screening CFD calculations performed to assess aero performance in the combustor-turbine transition piece

Architecture design choices will require careful attention to avoid significant aerodynamic losses in the transition piece.

- UM : Detonation Study for Interaction

[K]

UM : CFD for RDC-Turbine Integration

Detonation fitting approach:

- Capture induced properties without needing to resolve detonation
- Properly model oblique shock resulting from detonation wave

2D RDE Domain and Boundary Conditions

Wave direction

Injection Boundary Condition

Pini, Tini, Uini

Outlet

Oblique shock

Contact surface Product gases

Detonation Wave

Detonation fitting approach predicts same temperature field as general chemistry approach. Detonation fitting solution applied at RDC for downstream flow domain BC.

Unreacted gases

Periodic BC

GE Aerospace

2D RDE with General Chemistry,

Stoichiometric H₂ + Air

Summary and Next Steps

Summary And Next Steps

- Task 1 : PMP and TMP submitted
- Task 2 : Radial low dP (GT Cycle) feasibility and operability along 7FA GT OPLINE Demonstrated. Axial next.
- Task 3 : Scaling rig design finalized. First set of hardware released for fabrication.
- Task 4 : Thermal steady state rig layout in progress.
- Task 5 : Combustor Architecture study completed. RDC-Turbine interaction and integration studies in progress.

