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▪ Advanced gas turbine and pressure gain combustion

systems operating on zero-carbon fuels can play a critical

role in the decarbonization of power generation sector

▪ Computational fluid dynamics (CFD) simulation-driven virtual

design analysis can aid the development of these advanced

combustion systems, while saving costs associated with

experimental prototyping

▪ CFD simulations of full-scale combustor configurations with

detailed fuel kinetics are compute-intensive due to large

number of grid points and transport equations with stiff

chemical source terms for a multiple reactive species

evolving over disparate spatio-temporal scales

▪ Solving for detailed chemistry presents a major bottleneck in

the application of combustion CFD for comprehensive

parametric analysis and results in prolonged design cycles

MOTIVATION

Gas turbines

Rotating detonation engines
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▪ Advance and demonstrate ChemNODE, a novel deep learning (DL) framework developed at Argonne to

accelerate detailed chemistry computations, for reacting flow CFD simulations

➢ Mature ChemNODE software technology by incorporating algorithmic enhancements to make the DL

framework more efficient and robust

➢ Perform proof-of-concept demonstration studies by coupling ChemNODE with a CFD solver (CSI’s

CONVERGE CFD code) for simulations of practical combustion engines

TCF PROJECT GOALS 

▪ The ultimate goal is to transition ChemNODE software technology from TRL 2 (technology concept and/or

application formulated) to TRL 4 (technology validation in lab environment)

▪ The project seeks to deliver a self-contained ChemNODE software package that can be readily integrated

into CFD solvers for accelerated simulation-driven analysis and design of combustion energy systems; this

will facilitate technology transfer to industry
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𝜌
𝐷𝑌𝑘
𝐷𝑡

= −𝛻 ∙ 𝐣𝑘 + ሶ𝜔𝑘

Mechanism Reduction

▪ Classical graph-based reduction methods (DRG, 

DRGASA, DRGEP, etc.)

▪ Principal Component Analysis (PCA)

▪ Reduced-order flamelet models  

Accelerate Detailed Kinetics

▪ Sparse stiff ODE solvers

▪ ML-based computation

➢ Readily amenable to GPUs

➢ 𝑌 𝑡 + Δ𝑡 = 𝑁𝑁 𝑌 𝑡 , 𝜃 → Δ𝑡 dependent

➢ ሶ𝝎 = 𝑁𝑁(𝒀(𝑡), 𝜽)→ can handle variable Δ𝑡

ACCELERATING CHEMICAL KINETICS 

Reacting flow CFD typically 

uses operator splitting 

schemes



ChemNODE: BASIC APPROACH
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ℒ = 𝜳− ෡𝜳
2

2

ⅆ𝜳

ⅆ𝑡
= ሶ𝝎𝛹 𝜳 , 𝜳 = 𝑇,𝐻2, 𝑂2, …

𝑻

A chemically reacting system (with no diffusion or convective transport) is given by:

We can replace the computation of ሶ𝝎𝛹 using a neural network, 𝒩(𝜳;𝜽), which learns to predict the source terms 

as functions of the thermochemical state of the system

Conventional Data-driven Learning Approach

Train a neural network to minimize the difference between the predicted and actual source terms:

ChemNODE Approach

Train a neural network to obtain a source term that leads to small difference between actual and predicted 

ODE solutions:

ℒ = ሶ𝝎𝛹 −𝒩(𝜳;𝜽)
2

2

→ Prone to unstable solution during deployment

→ Combines data-driven learning and numerical validation phases in a 

robust integrated framework

Owoyele & Pal, Energy and AI, 2021

𝒩(𝜳;𝜽) 𝜳
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▪ First-of-its-kind application of neural

ordinary differential equations (NODEs) to

predict the evolution of chemical kinetics

▪ The deep learning framework is developed

in Julia programming language widely used

for scientific machine learning (SciML)

▪ Automatic differentiation techniques in Julia

are used to compute the loss derivative

terms,
𝜕෡𝜳

𝜕𝜽
, for backpropagation of errors

*Argonne Software Copyright: ANL-SF-20-154

Owoyele & Pal, Energy and AI, 2021

ChemNODE: DEEP LEARNING FRAMEWORK 
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▪ Ground truth data is generated from 0D simulations in Cantera

▪ 0D homogenous constant pressure hydrogen-air reactor at 1 atm

▪ Baseline detailed kinetic mechanism with 9 species and 19 reactions [O’Conaire et al.

2004]; NOx chemistry not included in the mechanism

▪ Ground truth data is generated from 0D simulations in Cantera

▪ Initial temperature (Ti) range of 1000-1200K and initial equivalence ratio (Φi ) range of 0.5-

1.5 considered

▪ Time series data is generated for 30 initial conditions; 50 points are sampled from each

time series

▪ Data is sampled from each time series such that there is a 50%-25%-25% data distribution

split between pre-ignition, ignition, and post-ignition phases

CASE STUDY: H2-AIR AUTOIGNITION 



▪ Single NN with two hidden layers (48 neurons each); 9

inputs/outputs; tanh activation function for each hidden

layer; NN outputs are scaled by the maximum source

term values from the dataset

▪ An implicit–explicit solver available in Julia was used for

ODE integration during training

▪ 2nd order Levenberg-Marquardt optimizer used to

minimize loss function based on Mean Squared Error

(MSE):

𝐿𝑀𝑆𝐸 =
1

𝑁
෍

𝑖=1

𝑁
𝚿 − ෡𝚿

𝚿𝒎𝒂𝒙 −𝚿𝒎𝒊𝒏

2

𝜳 = log(𝑇), log(𝑌𝐻2 ), log(𝑌𝑂2)… , log(𝑌𝐻2𝑂2 )
𝑻
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ChemNODE TRAINING APPROACH 



A POSTERIORI ChemNODE-CANTERA TESTS
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Inference speedup : ~3X over H2/air detailed chemical mechanism 

In-sample initial conditions

Markers: Cantera-ChemNODE

Solid lines: Ground truth (Cantera)



A POSTERIORI ChemNODE-CANTERA TESTS
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Out-of-sample initial conditions
Markers: Cantera-ChemNODE

Solid lines: Ground truth (Cantera)

▪ Initial conditions 𝑇𝑖 = 1125K and 𝜙 = [0.8,1.0,1.2] are within the bounds of 

training initial conditions, but were not used for training the network
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PHYSICS-CONSTRAINED LOSS FUNCTION 

▪ Adding error in elemental mass fractions to the

loss function improves training efficiency

𝐿𝑃𝐼𝑁𝑁 = 𝐿𝑂𝐷𝐸 + 𝜆1𝐿𝑒𝑙𝑒−𝐻 + 𝜆2𝐿𝑒𝑙𝑒−𝑂
where

𝐿𝑂𝐷𝐸 =
1

𝑁
෍

𝑖=1

𝑁
𝚿𝐢 − ෢𝚿𝐢

𝚿𝒎𝒂𝒙 −𝚿𝒎𝒊𝒏

2

𝐿𝑒𝑙𝑒−𝐻 =෍

𝑖=1

𝑁

log 1 + ෍

𝑘

𝑁𝑠
𝑁𝐻
𝑘𝑀𝑊𝐻

𝑀𝑊𝑘
𝑌𝑘,𝑖 − ෢𝑌𝑘,𝑖

2

𝐿𝑒𝑙𝑒−𝑂 =෍

𝑖=1

𝑁

log 1 + ෍

𝑘

𝑁𝑠
𝑁𝑂
𝑘𝑀𝑊𝑂

𝑀𝑊𝑘
𝑌𝑘,𝑖 − ෢𝑌𝑘,𝑖

2

𝜆1 = 3, 𝜆2= 3

Kumar et al., NeurIPS, 2023 (in press)
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ELEMENTAL MASS CONSERVATION 

Kumar et al., NeurIPS, 2023 (in press)
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TOTAL MASS CONSERVATION 

Kumar et al., NeurIPS, 2023 (in press)

Markers: MSE

Solid lines: PC-NODE
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CFD SOLVER INTEGRATION

𝑇
𝑌1
𝑌2
⋮
𝑌𝑘

Log transformation

෨𝑇
෩𝑌1
෩𝑌2
⋮
෪𝑌𝑘

෪ሶ𝜔𝑇

෪ሶ𝜔1

෪ሶ𝜔2

⋮
෪ሶ𝜔𝑘

Re-scaling
ሶ𝜔1

ሶ𝜔2

⋮
ሶ𝜔𝑘

CONVERGE UDF sage_molefrac_dotsage_molefrac



Simulation setup
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▪ 0D constant pressure autoignition mimicked in

CONVERGE as a 3D single cell problem with edge

length 𝑙 = 100 𝜇𝑚

▪ Homogeneous temperature and species mass

fractions are specified as initial conditions in the box

▪ Boundary conditions:

– 𝒙+: Dirichlet for pressure, zero gradient for

temperature, species and velocities

– 𝒙−, 𝒚+, 𝒚−, 𝒛+, 𝒛−: Symmetry boundary conditions

for pressure, temperature, species, and velocities

A POSTERIORI ChemNODE-CFD TESTS



▪ Predictions are more accurate for physics-constrained ChemNODE

𝑇𝒊 = 1000 𝑲,𝝓 = 0.5
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A POSTERIORI ChemNODE-CFD TESTS
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𝑇𝒊 = 1000 𝑲,𝝓 = 1.5

A POSTERIORI ChemNODE-CFD TESTS

▪ Predictions are more accurate for physics-constrained ChemNODE



Comparison of elemental mass fractions
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𝜙 = 0.5
Ti = 1000 K

𝜙 = 1.5
Ti = 1000 K

A POSTERIORI ChemNODE-CFD TESTS



▪ Coupling ChemNODE with autoencoders

➢ Encoder generates the latent space representation of thermochemical state

➢ NeuralODE captures the dynamics of the chemical system in the latent space

➢ Decoder maps the latent space variable back to original thermochemical state space

➢ Demonstration studies are underway for larger kinetic mechanisms of fuels of interest

(methane, ammonia) to power generation applications

Learning the dynamics in a lower-dimensional latent space
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ChemNODE EXTENSION FOR LARGE MECHANISMS



SUMMARY
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▪ Proof-of-concept studies were performed with ChemNODE for H2/air 0D homogeneous autoignition

▪ Elemental mass conservation was incorporated within the ML training framework

▪ ChemNODE accurately captured the temporal evolution of thermochemical scalars for different initial

temperatures and equivalence ratios, while achieving 3X speedup over the H2/air detailed mechanism

▪ ChemNODE was coupled with CONVERGE CFD solver via UDFs and a posteriori demonstration

studies were performed

ONGOING & FUTURE WORK

▪ Extension of ChemNODE for larger kinetic mechanisms → coupling with autoencoders, high-P

conditions, constant volume autoignition

▪ Demonstration studies currently underway for methane and ammonia combustion

▪ Future studies will focus on application of ChemNODE to 2D/3D combustion CFD
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