

Development of Syngas Oxy-Combustion Turbine for Use in Advanced sCO₂ Power Cycles

University Turbine Systems Research - Project Review Meeting

DE-FE0031929

November 1, 2023

Development of Syngas Oxy-Combustion Turbine for Use in Advanced sCO₂ Power Cycles

- Main Objective: Develop a detailed design for a sCO₂ direct fired oxyfuel turbine for utility scale (300 MWe) utilizing a coal syngas fuel, with the ability to be co-fired with natural gas.
- Operation in an Allam-Fetvedt cycle targets near zero emissions, while targeting 43% LHV system efficiency.
- The density and heat transfer properties of sCO_2 can take advantage of compact turbomachinery and effective thermal management.

Turbine conditions

log P-h Diagram for Carbon Dioxide

- How does this compare to steam and gas turbines?
 - Steam (AUSC): 330 bar, 670°C (Source: GE Steam Power)
 - Gas Turbine: 23 bar, 1430°C (Source: GE H-class)

Project components

Turbine Design

Materials Testing

Component Testing

Project team

SwRI PI, heat transfer testing, materials testing, turbine design.

Aerodynamic flowpath definition, design support.

Turbine first stage optimization, blade cascade testing.

- Pin fin, impingement heat transfer testing.
- 8 RIVERS Thermodynamic cycle model.

Oxy-combustor development and analysis.

Materials Testing

6

Autoclave material testing

- Autoclave tests are for turbine materials and coatings exposure to observe oxidation characteristics at turbine inlet conditions.
- An induction heater with susceptor is used with TCs inserted to measure temperature throughout stack of material samples.

Autoclave material testing

Autoclave material testing

- While commissioning and testing over multiple days have been completing, ongoing efforts underway for long duration testing (1,000 – 5,000 hrs.)
- Overcoming obstacles including susceptor failures.

INL • JAEA • MIT ③ NRC • CEA • Wisconsin • KAIST ④ ORNL ④ SwRI goal ④ SwRI achieved

TBC Cyclic Testing

- 500 cycles
 - 50 min at (1050°C or 1150°C), ambient pressure.
 - I0 min. forced air cooling.
- Two different coating methods on nickel alloy (Haynes 230 shown):
 - Thermal spray MCrAIY bond coat, thermal spray yttrium stabilized zirconia (YSZ) top coat.
 - Plasma Enhanced Magnetron Sputtering (PEMS) MCrAIY bond coat, thermal sprayed (YSZ) top coat

TBC-1

TBC-2

TBC cyclic testing

- Degradation seen on almost all samples for 1150°C cycling.
- PEMS bond coat witnessed significantly less carbide and oxide attack than thermal sprayed bond coat.

11

Component Testing

- A plethora of midsection ribbed cooling is available up to a RE number of ~50,000 based on air-breathing engine.
- What happens with sCO₂ at internal cooling RE numbers 100k 400k?

 Assembly and disassembly between interchangeable inserts can be completed in 5 hrs.

The parameter Nu/Nu0 compares the calculated test Nusselt number to a smooth wall Nusselt number calculated from the Gnielinski correlation for a fully developed internal passage with the same fluid conditions.

A dP transmitter measures the pressure loss across the serpentine passage with five passes.

Plain wall insert Ribbed wall linsert 350000 400000

SIB cascade testing

Commissioning is underway at the Purdue Big Rig for Aerothermal Stationary Turbine Analysis (BRASTA) for a SIB cascade test.

SIB cascade testing

Optimization methods are being used based on CFD analysis to optimize pressure tap location to reconstruct blade loading.

SIN-SIB cavity testing

Commissioning of subsonic wind tunnel is taking place to capture operating range during testing of cavity upstream of SIB.

Turbine Design

Turbine design

Turbine design

Standard operating conditions

Target design criteria

- Hot section component lifetime (combustor, transition duct, SIN, SIB): 30k hrs
- Rotor lifetime: I 50k hrs
- Pressure containing components designed to ASME BPVC, Section VIII.
- Mitigate capital cost through the following strategies:
 - Minimize wetted area of HP sections to minimize required section thickness and sealing force.
 - Use cooling flow routing to jacket large diameter components to use alloy steels below their creep regime.

Outer case geometry

Outer case design tools

Material	Sallow	Unit	Temp (°F)	Source
J22091	30.8E+3	psi	850	Input from BPVC Sec2.PtD.C.Table 5A
I740	40.0E+3	psi	800	Input from BPVC Code Case 2702-2
ss410	17.2E+3	psi	850	Input from BPVC Sec2.PtD.C.Table 3

INNER CASE: Axial Load	23E+6	lbf
COMBUSTOR CASE: Axial Load	25.4E+6	lbf
OUTER CASE: Flange Separation Load	6.15E+6	lbf

INNER CASE: Cylindrical Wall Thickness		5.03	in
COMBUSTOR CASE: Cylindrical Wall Thickness -		5.73	in
COMBUSTOR CASE: Cylindrical Wall Thickness -		7.60	in
OUTER CASE: Cylindrical Wall Thickness		1.27	in
OUTED CASE: Flamma Width, Uninht	Flange Width	11.8	in
OUTER CASE: Hange width, Height	Flange Height	10.05	in
	Shear Ring Width	4.33	in
COMBUSTOR CASE - INNER CASE: Rail Fit	Depth of Engagement	2.50	in
	Edge Margin	7.92	in
	Shear Ring Width	1.11	
COMBUSTOR CASE - OUTER CASE: Rail Fit	Depth of Engagement	0.640	
	Edge Margin	1.943	

Matl	S_bolt_allow (psi) Total Bolt Count												Nut Diam										
K14072.a	25100	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	in
	3	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	ps	ps	ps	ps	5.433
	3.25	s	s	s	s	s	s	s	s	s	s	s	s	s	s	ps	5.857						
	3.5	s	s	s	s	s	s	s	s	s	s	s	s	ps	6.281								
	3.75	s	s	s	s	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	6.705
ete	4	s	s	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	7.129
Ĕ	4.25	s	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	р	7.553
Dia	4.5	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	р	р	7.977
<u><u> </u></u>	4.75	s	s	s	s	s	s	ps	ps	ps	ps	23	ps	ps	ps	ps	ps	ps	р	р	р	р	8.401
8	5	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	р	р	р	р	8.825
_	5.25	s	s	s	s	s	ps	ps	ps	ps	р	р	р	р	р	р	9.249						
	5.5	s	s	s	s	s	ps	ps	ps	р	р	р	р	р	р	р	9.673						
	5.75	s	s	s	s	ps	ps	ps	р	р	р	р	р	р	р	10.097							
	6	s	s	s	s	ps	ps	р	р	р	р	р	р	р	р	10.521							

Outer case FEA

Combustor housing design

- ASME Section VIII, Div. I UG-27, UG-32
 - Cylindrical Sections: $t = \frac{PR}{(SE 0.6P)}$

- Conical Section:
$$t = \frac{PD}{2\cos(\alpha)(SE - 0.6P)}$$

- ASME Section VIII, Div. 2 Part 4
 - Cylindrical Sections: $t = \frac{D}{2} exp\left(\left[\frac{P}{SE}\right] 1\right)$

- Conical Section:
$$t = \frac{D}{2\cos(\alpha)} exp\left(\left[\frac{P}{SE}\right] - 1\right)$$

Combustor housing design

Minimum Required Thickness on Combustor Plenum*										
Rank	Material	t ₁	t ₂	t ₃	t	1.5*t ₃	1.5*t _n			
5	N06230	2.60	4.50	11.63	0.89	17.45	1.34			
4	N06625	2.56	4.43	11.45	0.98	17.18	1.47			
3	J22091	2.50	4.33	11.20	-	16.80	-			
2	J42045	2.36	4.09	10.56	-	15.84	-			
1	N07718	1.34	2.32	5.99	0.51	8.99	0.77			

*conical section requires 1.5*thickness to accommodate 12 can holes

While N07718 requires the thinnest vessel sections, fabrication with low-Cr steels is more feasible. J42045 offers the best allowable stress at design temperature (800°F). Nozzle fabrication will be a Nickel alloy for high temperature application near nozzle.

SIB design

- Leading edge impingement
- Ribbed serpentine channels
 - Ribs not yet modeled
- Pin-fin array
- Trailing edge ejection
- Thermal Barrier Coating

SIB design – thermal and hydraulic network

- Mass flow calculated from pressure differential and area at each flow ejection hole
 - Hole discharge coefficients from literature (Cd = 0.75)
 - Ribbed channels f/f0 = 10.
 - Pin fin array friction factor of 0.2 per row.
 - Significant centrifugal "pumping" with CO2 cooling flow.
- Thermal resistance network used to estimate blade surface Temperature.
 - LE Impingement HTC determined from Chupp correlation.
 - Serpentine channel HTC from modified Gnielinski correlation with BP2 test data enhancement factor.
 - TE pin-fin array HTC from Metzger correlation
 - Thermal Barrier Coating ultimately assumed to be 0.018" thick with k = 1.25 W/m-K.

Zone
T - gas path (C)
T - internal coolin
R - gas path (K/W)
R - tbc (K/W)
R - blade wall (K/\
R - internal coolin
R - sum (K/W)
q (W)
T - blade outer su

	LE	Middle	TE
	1114	1089	1064
ig (C)	526.22	445	430
)	0.1969	0.0615	0.0438
	3.841	0.768	0.960
W)	0.5780	0.1156	0.1445
ng (K/W)	0.70	0.22	0.493
	5.314	1.165	1.642
	110.6	552.8	385.9
rface (C)	667.4	630.4	676.5

SIB design – imported CFD results

Imported pressure loading.

Imported convection source temperature for external heat load.

SIB design – thermal FEA

- Each internal passage is given a unique cooling CO_2 temperature and heat transfer coefficient.
- An approximate 100°C temperature rise is predicted from feed passage to LE and TE cavities.

SIB design - structural

- Curve fits are produced for Haynes 282 UTS and 30k hour creep strength as a function of temperature.
- Result for initial evaluation:

 $f = \frac{\sigma_{VM}}{\min(UTS(T), \sigma_{cr}(T))}$

36

SIB design – structural FEA

$$f = \frac{\sigma_{VM}}{\min(UTS(T), \sigma_{cr}(T))}$$

SIB blade root design

- Parallel T-root chosen for monolithic rotor based on literature study.
- Sidestep on base of T-root allows for blades to load off of each other.

tudy. other.

SIB blade root design

- Boundary Conditions
 - Blade Loading From GE
 - Run with Solid Blade H282
 - I/8" Cooling Port

		Ro	tor Thrust	Tangent	ial Force	
	Count	Total	Per Blade	Total	Per Blade	
	#	lbf	lbf	lbf	lbf	
Blade 1	142	82,351	579.9	73,259	515.9	
Blade 2	142	87,750	618.0	74,212	522.6	
Blade 3	142	81,806	576.1	75,217	529.7	
Blade 4	126	70,228	557.4	74,498	591.3	
Blade 5	126	55,424	439.9	72,064	571.9	
Blade 6	126	37,759	299.7	69,903	554.8	
total		415,319				

Bearing specification

- Radial bearings were sized with assistance from a vendor for the 21" shaft diameter (175 GPM per bearing).
- Updated rotordynamic analysis shows acceptable response and margin from running speed (3600 RPM).

Combustor Design

Combustor thermal management

- Cooling flow jackets the combustor housing nozzle to extend lifetime of nozzle welded to combustor housing.
- Liner thermal analysis underway to modify geometry and determine TBC requirements for 30,000 hr. target lifetime.

Combustor Design

- Recycle flow temperature and pressure (696 °C, 315 bar) mandates the use of nickel alloy (IN 740H, H282) for Grayloc clamp connectors and blind.ANSI flanges aren't an option.
- A remaining challenge to be met is the orientation of nozzles to simplify the required piping and manifolds.

BP3 Continuing Activities

- Thermal and aerodynamic validation of SIB design at SwRI and Purdue test facilities, respectively.
- Cost estimation for turbine design, to be integrated into EPRI technoeconomic analysis.
- Thermodynamic cycle reevaluation based on determined cooling flow requirements.

Publications

- Logan Tuite, Purdue University, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-101722, Optimization of an HPT Blade and Sector-Based Annular Rig Design for Supercritical CO2 Power Cycle Representative Testing.
- Ryan Wardell, University of Central Florida, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-103263, An Experimental Investigation of Heat Transfer for Supercritical Carbon Dioxide Cooling in a Staggered Pin Fin Array.
- John Richardson, University of Central Florida, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-102544, Experimental & Computational Heat Transfer Study of sCO₂ Single Jet Impingement.
- Ieff Moore, Southwest Research Institute, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-103328, Development of a 300 MWe Utility Scale Oxy-Fuel sCO₂ Turbine.

####