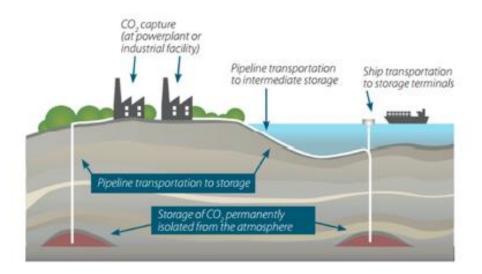


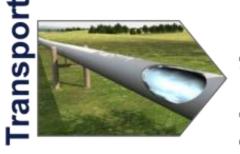
CO₂ Safe&Sour JIP

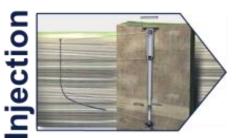

General JIP presentation

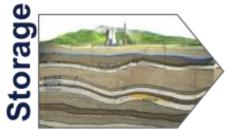
Klas Solberg, Project manager

WHEN TRUST MATTERS

Background


- Carbon Capture and Storage (CCS) is being pursued as a means to reduce GHG emissions
- Currently there is a significant need coupled with incentive to facilitate CCS solutions.
- Capture/Transport of CO₂ from various sources will involve using the existing pipeline network as well as building new pipeline network.
- Injection/Storage of CO₂ in existing or new wells will also be a critical part of the CCS solution




Currently focus is on understanding the factors that influence performance of materials in the pipeline network Phase stability Effect of impurities Running Fracture Dispersion & Toxicity effects

DNV's Joint Industry Projects for CCUS

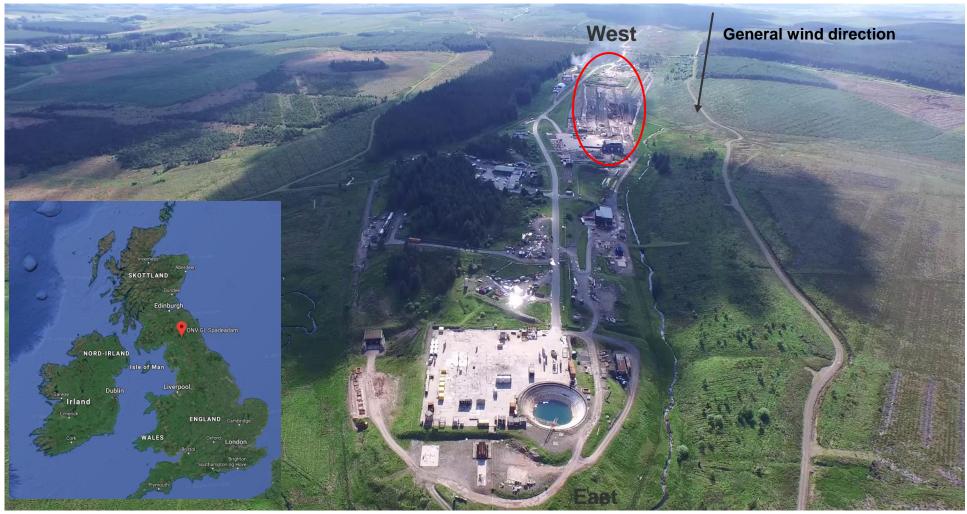
CO2CAPTURE

CO2PIPETRANS

	Reconstruction from the second
1	OF CO, PIPELNES
	4996 (1916
	NO NUMBER VEHICLE

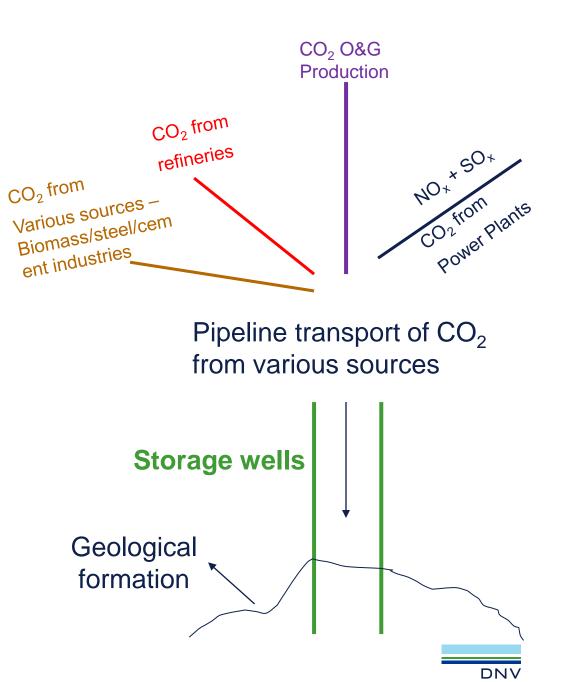
CO2WELLS

CO2QUALSTORE


Development of DNV-RP-F104

- First revision
 - DNV-RP-J202 (2010)
 - Based on JIP CO2PIPETRANS
- Second revision
 - Re-named from DNV-RP-J202 to DNVGL-RP-F104
 - Based on JIP CO2PIPETRANS (2017)
- Third revision
 - DNV-RP-F104 February 2021
 - Based on CO2SafeArrest JIP

The world's 1st industry guideline

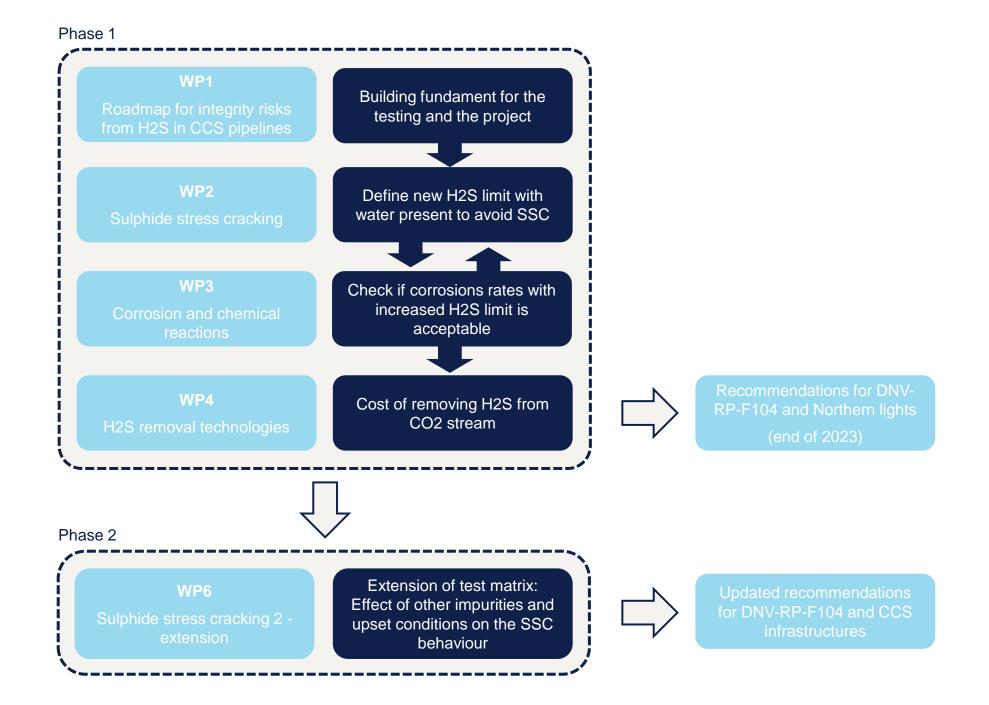

- provides guidance and sets out criteria for safe, reliable and cost efficient development, design, construction and operation of pipelines intended for CCS scale transmission of CO₂ in pipelines
- Experimental testing (phase I was desk top study)
 - CO₂ release (as input to dispersion modelling)
 - Corrosion testing
 - Fracture arrest testing
- Fracture arrest tests
 - 2 of 16" tests in Norway
 - 2 of 24" tests in Italy (SARCO2B JIP)
- Based on JIP CO2SafeArrest with objective:
 - Development of fracture arrest design requirements
 - Fracture arrest testing
 - 2 of 24" tests at Spadeadam

Spadeadam test site

Background

- CCS solutions will involve co-mingling and transport of CO₂ from various sources.
- Significant focus is being placed on capture and transportation → Need to understand the impact on materials in the transportation infrastructure.
- Understanding and defining the pipeline infrastructures ability to handle CO₂ with various impurities is important to ensure safety and feasibility of CCS solutions

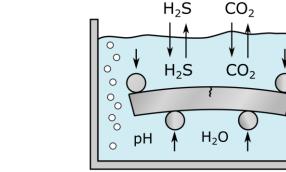
CO₂ Safe & Sour JIP

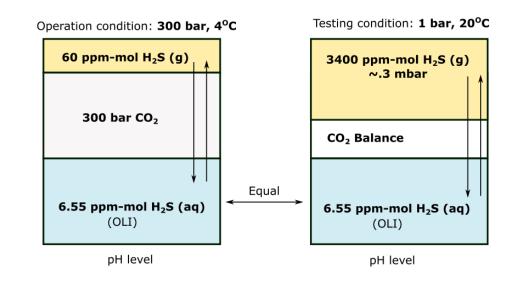

The Northern Lights pipeline is being developed with tight tolerances for impurities, including H_2S .

Increased tolerance levels for impurities can give considerable value to CCS projects:

- Makes CCS more accessible for different sources/customers
- Limiting customers need for gas processing

Goal	 Increase tolerance levels for impurities resulting in sour service conditions. Enable cost effective development of Northern Lights and other CCS Hub projects.
Objective	 Understand the implication of H₂S on the integrity of CO2 pipelines and quantify limits for safe operation.
End-state	 Knowledge basis for update of DNV-RP- F104 on allowable H₂S limits in operation.


WP1 Roadmap for integrity risks from H₂S in CCS pipelines


- Report reflecting the discussions leading to the experimental work to be performed in the project
- Rev 0 issued November 2022
- Addresses:
 - Integrity risk
 - Relevant standards
 - Pipeline environment
 - Pipeline design
 - Basis for SSC testing
 - Basis for corrosion and chemical reactions testing

DNV
CO2 SAFE&SOUR JOINT INDUSTRY PROJECT Roadmap report Roadmap report for integrity risk from H2S in CCS pipelines
Report No.: 2022-3232, Rev. 0 Document No.: 1752532 Date: 2022-11.30

WP2 Sulphide stress cracking

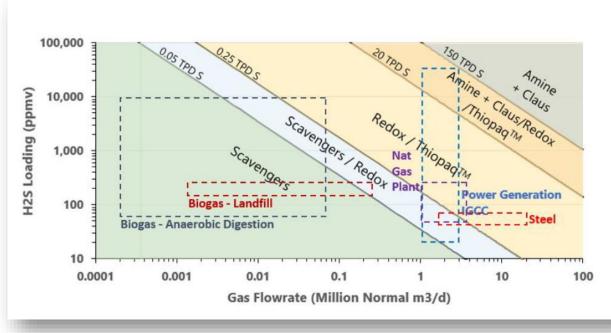
- Quantifying H₂S limit in CO₂ streams in the presence of water
- Defining "simplified" test setups representing the key factors leading to SSC in pipelines
 - Modelling as input
 - Focus on representing the pH and the H₂S level in the aqueous phase
- Screening testing at simplified test setups
 - Four-point bending
 - H₂S level in aqueous phase, controlled pH
- Validating tests at conditions close to real operation
 - Four-point bending
 - H₂S level in gas, pH controlled by gas composition

0

000

0

WP3 Corrosion and chemical reactions


- Acceptable corrosion rates with increased H₂S content in the gas specification?
- Risk of drop-out of acid with increased H₂S level in the gas specification?
- Testing in dense phase CO₂ with selected gas components from the Northern Light gas specification and H₂S
- The initial experimental work will be based on:
 - The Northern Lights CO₂ specification
 - Modified NL specification with increased H₂S content

WP4 H₂S removal technologies

- Extensive review of H₂S removal technologies applicable to captured CO₂ streams
- CO₂ streams from different sectors
- Different removal technologies and related cost

H₂S Removal Technologies and Cost Review Study

Study Report

Prepared for:	DNV	
Wood Project Number:	522214	
Rev:	01	
Date:	11 th October 2022	

wood.

WP6 Sulphide stress cracking 2 - extension phase 2

- Extending the test matrix based on experimental results in WP2 and WP3
- Scope to be detailed, likely focus areas:
 - The risk for SSC in upset conditions related to other gas compositions the risk of acid dropout (Effect of lower pH and transient behaviours)
 - Hydrogen permeation
 - Fracture mechanics based testing
 - Additional materials

Key Takeaways & Next Steps

- Comingling of CO₂ streams from various sources can result in significantly different gas compositions from what has been used in EOR
- Understanding the role of impurities on CO₂ pipelines is critical
- Key Questions to consider
 - Role of Impurities on Phase Stability
 - Role of Impurities on damage accumulation
 - Some work is in progress on corrosion but very little on *cracking behavior*
 - Impact of impurities on running fracture
 - Technologies for removal of impurities

WHEN TRUST MATTERS

DNV

www.dnv.com

15 DNV ©

DNV project team

Klas Solberg PhD Project manager

Gustav Heiberg PhD Project sponsor

Bente H Leinum MSc Pipeline and flow, QA

Kari Lønvik PhD Corrosion and chemical reactions

Erling Østby PhD Fracture mechanics

Riccardo Rizzo PhD Corrosion, DNV Bergen, testing

Tarlan Hajilou PhD Fracture mechanics, DNV Bergen, testing

Ramgopal Thodla PhD Fracture mechanics, DNV Columbus, testing

