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Research Goals

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• Develop a thermodynamics-based model that predicts mutual solubilities of 

water/acid in CO2 (supercritical/liquid/vapor) in presence of trace impurities.

• We will employ in-house as well as published experimental data for 

model development

• Employ molecular simulations to study the homogeneous and 

heterogeneous nucleation of water (on metal surface or around impurities) 

in dense phase CO2 conditions.
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Effect of Impurities on the Phase Diagram of CO2

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

Pure CO2 [1] CO2 + impurity binary mixture [1]

[1] P. N. Seevam, J. M. Race, M. J. Downie, P. Hopkins, International Pipeline Conference (2008), 39 – 51.

V-L region

Gibbs phase rule: DoF = N – δ + 2

N: # species, δ: # phases  

Dew pointBubble 

point
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Definitions

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

CO2 + impurity binary mixture

V-L region

Dew pointBubble 

point

• Dew point: When the first drop of 

liquid phase appears 

• Bubble point: When the first 

bubble of vapor phase appears

• Composition of any phase point in 

the V-L envelope is determined by 

the Lever rule
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Water - CO2 Phase Diagram [1]

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

L1 : Water – rich liquid

L2 : CO2 – rich liquid

V: Vapor phase

H: Hydrates

[1] N. Spycher, K. Pruess, J. Ennis-King, Geochimica et Cosmochimica Acta, 67 (2003), 3015 - 3031.
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For our purposes, we mainly focus on 2 phase 
regions

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

Why? We have trace amounts of impurities in CO2 or CO2 + water phase

• Case 1: Water condensing out of supercritical (Sc) CO2 : the two phases 

are Sc CO2 and liquid water.

• Case 2: Two phase sub-critical CO2 system: water partitions between the 

two phases. 

• There is a small three phase region: Liquid CO2, liquid water and vapor 

CO2 but if the quantity of water is small, the three-phase region will not be 

observed. 
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Gibbs Phase Rule

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• Degrees of Freedom (DoF) = N – δ + 2

Where N: # species, δ: # phases

• DoF: number of thermodynamic variables to be specified to define a 

phase point completely

• Suppose N = 3, δ = 2, DoF= 3, which can be (T, x1, x2) or (T, P, x1) 

• Suppose N = 5, δ = 2, DoF= 5, which can be (T, xi,) or (T, P, x1, x2, x3) 
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Thermodynamics of Phase Equilibria

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

𝜇𝑖
𝑙𝑖𝑞

= 𝜇𝑖
𝑣𝑎𝑝

• At equilibrium, chemical potential of each species, μi in different phases is equal. 

• Phase equilibrium between an ideal vapor/gas and ideal liquid is described by Raoult’s law

• Overall goal is to model the non-idealities in the liquid and vapor/gas phases

• Non-idealities are represented as deviations from ideal vapor/gas and ideal (Lewis) liquid

• Fugacity coefficients for vapor/gas phase: 𝜙𝑖
𝑣𝑎𝑝

• Activity coefficients for liquid phase: 𝛾𝑖
𝑙𝑖𝑞

• Non-idealities arise from intermolecular interactions. They are system-dependent and are 

modeled via equation of state and excess Gibbs free energy models
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Workflow

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

Start

Estimate 𝜙𝑖, 𝛾𝑖from 
fitting parameters

Predict dew & 
bubble points

Error 
> δ?

Error = |Expt –
Prediction|

Modify fitting 
parameters

Stop

No Yes
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Thermodynamics of Phase Equilibria

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

𝜇𝑖
𝑙𝑖𝑞

= 𝜇𝑖
𝑣𝑎𝑝

• At equilibrium, chemical potential of each species, μi in different phases is equal. 

• Define fugacity fi: 

• It can be shown that, equivalently, at equilibrium:  𝑓𝑖
𝑙𝑖𝑞

= 𝑓𝑖
𝑣𝑎𝑝

• Define fugacity coefficient:

𝜙𝑖
𝑣𝑎𝑝

=
𝑓𝑖
𝑣𝑎𝑝

𝑦𝑖𝑃

• Define activity coefficient: 

𝛾𝑖
𝑙𝑖𝑞

=
𝑓𝑖
𝑙𝑖𝑞

𝑥𝑖𝑓𝑖
𝑝𝑢𝑟𝑒,𝑙𝑖𝑞

(yi, xi: mole fractions of species i in vapor and liquid phases respectively)

𝑓𝑖 = 𝑥𝑖𝑃exp(
𝜇𝑖−𝜇𝑖

𝑖𝑔

𝑅𝑇
)
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Thermodynamics of Phase Equilibria

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

𝑓𝑖
𝑝𝑢𝑟𝑒,𝑙𝑖𝑞

≈ 𝑃𝑖
𝑠𝑎𝑡 (Ignoring the Poynting correction factor. 

Can be added for high pressures)

• At V-L equilibrium:  𝑥𝑖𝑃𝑖
𝑠𝑎𝑡 𝛾𝑖

𝑙𝑖𝑞
=𝑦𝑖𝑃𝜙𝑖

𝑣𝑎𝑝

• At L-L equilibrium: 𝑥𝑖
𝑙𝑖𝑞1

𝛾𝑖
𝑙𝑖𝑞1

=𝑥𝑖
𝑙𝑖𝑞2

𝛾𝑖
𝑙𝑖𝑞2

• Phase equilibrium calculations boil down to estimating γi
liq

and ϕi
vap
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Estimating Activity Coefficients

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• γi
liq

is related to excess Gibbs free energy, gE : RT ln(𝛾𝑖
𝑙𝑖𝑞
) =

𝜕𝑁𝑔𝐸

𝜕𝑁𝑖 𝑇,𝑃

Mixed Solvent Electrolyte Model [1,2,3]

𝑔𝐸 = 𝑔𝐿𝑅
𝐸 + 𝑔𝑀𝑅

𝐸 + 𝑔𝑆𝑅
𝐸

Long range 

electrostatic 

interactions

Medium range 

ion-ion and 

ion-molecule 

interactions

Short range 

interactions

𝑔𝐿𝑅
𝐸

: Debye-Huckel model 

𝑔𝑀𝑅
𝐸 : A function of composition and ionic 

strength

𝑔𝑆𝑅
𝐸 : UNIQUAC model

[1] P. Wang, A. Anderko, R. D. Young, Fluid Phase Equilibr., 203 (2002) 141 - 176.

[2] P. Wang, A. Anderko, R. D. Springer, R. D. Young, J. Mol. Liq. 125 (2006) 37 – 44.

[3] B. H. Morland et. al, Ind. Eng. Chem. Res. 58 (2019), 22924 – 22933.  
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Estimating Fugacity Coefficients

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• ϕi
vap

are calculated from equation of state like SRK or Peng-Robinson 

𝑤ℎ𝑒𝑟𝑒, 𝑧 =
𝑃𝑉

𝑁𝑅𝑇
𝜙𝑖 𝑇, 𝑃, 𝑥 = exp න

0

𝑃 𝜕𝑁𝑧

𝜕𝑁𝑖 𝑇,𝑃,𝑥𝑗≠𝑖

− 1
𝑑𝑃

𝑃

• For example, let the vapor phase be represented by van der Waals equation of state:

𝑃 =
𝑅𝑇

𝜈 − 𝑏
−

𝑎

𝜈2
where, a =

i



j

xixj aiaj 𝑏 =

𝑖

𝑥𝑖𝑏𝑖

⇒ 𝑧 =
𝜈

𝜈 − 𝑏
−

𝑎

𝜈𝑅𝑇
⇒ 𝑙𝑛𝜙𝑖 = 𝑙𝑛

𝜈

𝜈 − 𝑏
+

𝑏𝑖
𝜈 − 𝑏

−
2 𝑎𝑖 σ𝑗 𝑥𝑗 𝑎𝑗

𝜈𝑅𝑇
− ln 𝑧

Mixing rules
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Estimating Fugacity Coefficients 

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

Mixed Solvent Electrolyte Model [1,2,3]

[1] P. Wang, A. Anderko, R. D. Young, Fluid Phase Equilibr., 203 (2002) 141 - 176.

[2] P. Wang, A. Anderko, R. D. Springer, R. D. Young, J. Mol. Liq. 125 (2006) 37 – 44.

[3] B. H. Morland et. al, Ind. Eng. Chem. Res. 58 (2019), 22924 – 22933.  

• ϕi
vap

are calculated from the Soave – Redlich – Kwong (SRK) equation: 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎

𝑇𝑉(𝑉 + 𝑏)

ai = a(Tc, Pc) and bi = b(Tc, Pc) 
Fitting parameter 

from expt. data. 
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Including Chemical Reactions

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• Chemical reactions introduce constraints between chemical potential of species.

νi
j

represents stoichiometric coefficient of species i in the reaction j



𝑖=1

𝑟

𝜇𝑖𝜈𝑖
𝑗
= 0
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Molecular Simulations

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• Presence of impurities / metal surfaces alter conditions under which water / acid precipitates. 

Why? We can study this using molecular simulations.  

• Study nucleation of water in dense phase CO2 environment

a) Homogeneous nucleation

b) Nucleation in presence of impurities and/or metal surfaces

Initial system After 0.5 ns

Water clusters

Criscenti, Cygan, Environmental Science and Technology, 2012
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Key Takeaways 

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• A thermodynamic model to predict water/acid solubility in dense phase CO2 with speciation 

will be build.

• With the help of molecular simulations, the fundamental mechanisms involved homogeneous 

and heterogeneous nucleation of water  in different conditions will be determined. 
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Next Steps

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• Once we have a working thermodynamic model, we will extend it to include other species like 

glycols and amines. 

• We will combine thermodynamic modeling to corrosion to provide a mechanistic model to 

predict corrosion rates under different conditions. 
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Including Chemical Reactions

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• Chemical reactions introduce constraints between chemical potential of 

species.

• Consider a system of r species with q possible chemical reactions. Each chemical 

reaction is given by: 

0 ⇌

𝑖=1

𝑟

𝜈𝑖
𝑗
𝐵𝑖 ∀ 𝑗 ∈ 1 𝑞 Bi represents a species and νi

j
represents its 

stoichiometric coefficient in the reaction j

• For a reaction j, the extent of the reaction εj is given by, dNi = υi
j
dεj, where Ni is 

the number of moles of the species Bi.
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Including Chemical Reactions

Institute for Corrosion and Multiphase Technology

Department of Chemical and Biomolecular Engineering

• At constant temperature, T and pressure, P, the Gibbs free energy, G is minimized. 

𝑑𝐺 = σ𝑖=1
𝑟 𝜇𝑖𝑑𝑁𝑖

➔ 𝑑𝐺 = σ𝑗=1
𝑞 σ𝑖=1

𝑟 𝜇𝑖𝜈𝑖
𝑗
𝑑𝜀𝑗

Now substituting 𝑑𝑁𝑖 = 𝜐𝑖
𝑗
𝑑𝜀𝑗

𝜕𝐺

𝜕𝜀𝑗 𝑇,𝑃, 𝜀𝑘≠𝑗

= σ𝑖=1
𝑟 𝜇𝑖𝜈𝑖

𝑗
= 0

This constraint can be written in terms of activity 

coefficients. 


