First Principles Thermodynamic Modeling of Phase Change in Dense Phase CO₂ Environment Sumit Sharma, Yoon-Seok Choi

February 2023

Create for Good.

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

Research Goals

- Develop a thermodynamics-based model that predicts mutual solubilities of water/acid in CO₂ (supercritical/liquid/vapor) in presence of trace impurities.
 - We will employ in-house as well as published experimental data for model development
- Employ molecular simulations to study the homogeneous and heterogeneous nucleation of water (on metal surface or around impurities) in dense phase CO₂ conditions.

Effect of Impurities on the Phase Diagram of CO₂

[1] P. N. Seevam, J. M. Race, M. J. Downie, P. Hopkins, International Pipeline Conference (2008), 39 – 51.

OHIO UNIVERSITY RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

Definitions

- **Dew point**: When the first drop of liquid phase appears
- **Bubble point:** When the first bubble of vapor phase appears
- Composition of any phase point in the V-L envelope is determined by the Lever rule

Institute for Corrosion and Multiphase Technology Department of Chemical and Biomolecular Engineering

Water - CO₂ Phase Diagram [1]

 L_1 : Water – rich liquid L_2 : CO_2 – rich liquid V: Vapor phase H: Hydrates

[1] N. Spycher, K. Pruess, J. Ennis-King, Geochimica et Cosmochimica Acta, 67 (2003), 3015 - 3031.

Institute for Corrosion and Multiphase Technology Department of Chemical and Biomolecular Engineering

For our purposes, we mainly focus on 2 phase regions

Why? We have trace amounts of impurities in CO_2 or CO_2 + water phase

- **Case 1:** Water condensing out of supercritical (Sc) CO₂ : the two phases are Sc CO₂ and liquid water.
- Case 2: Two phase sub-critical CO₂ system: water partitions between the two phases.
- There is a small three phase region: Liquid CO₂, liquid water and vapor CO₂ but if the quantity of water is small, the three-phase region will not be observed.

Gibbs Phase Rule

• Degrees of Freedom (DoF) = $N - \delta + 2$

Where N: # species, δ : # phases

- DoF: number of thermodynamic variables to be specified to define a phase point completely
- Suppose N = 3, δ = 2, DoF= 3, which can be (T, x_{1}, x_{2}) or (T, P, x_{1})
- Suppose N = 5, δ = 2, DoF= 5, which can be (T, x_{i}) or (T, P, x_1 , x_2 , x_3)

Thermodynamics of Phase Equilibria

• At equilibrium, chemical potential of each species, μ_i in different phases is equal.

 $\mu_i^{liq} = \mu_i^{vap}$

- Phase equilibrium between an ideal vapor/gas and ideal liquid is described by Raoult's law
- **Overall goal** is to model the non-idealities in the liquid and vapor/gas phases
- Non-idealities are represented as deviations from ideal vapor/gas and ideal (Lewis) liquid
 - Fugacity coefficients for vapor/gas phase: ϕ_i^{vap}
 - Activity coefficients for liquid phase: γ_i^{liq}
- Non-idealities arise from intermolecular interactions. They are system-dependent and are modeled via equation of state and excess Gibbs free energy models

Workflow

Institute for Corrosion and Multiphase Technology Department of Chemical and Biomolecular Engineering

Thermodynamics of Phase Equilibria

• At equilibrium, chemical potential of each species, μ_i in different phases is equal.

$$\mu_i^{liq} = \mu_i^{vap}$$

- Define fugacity f_i: $f_i = x_i P \exp(\frac{\mu_i \mu_i^{ig}}{RT})$
- It can be shown that, equivalently, at equilibrium:

$$f_i^{liq} = f_i^{vap}$$

• Define fugacity coefficient:

$$\phi_i^{vap} = \frac{f_i^{vap}}{y_i P}$$

$$\gamma_i^{liq} = \frac{f_i^{liq}}{x_i f_i^{pure,liq}}$$

(y_i, x_i: mole fractions of species i in vapor and liquid phases respectively)

Thermodynamics of Phase Equilibria

(Ignoring the Poynting correction factor. Can be added for high pressures)

• At V-L equilibrium:

 $f_i^{pure,liq} \approx P_i^{sat}$

$$x_i P_i^{sat} \gamma_i^{liq} = y_i P \phi_i^{vap}$$

• At L-L equilibrium:

$$x_i^{liq1} \gamma_i^{liq1} = x_i^{liq2} \gamma_i^{liq2}$$

• Phase equilibrium calculations boil down to estimating γ_i^{liq} and φ_i^{vap}

Estimating Activity Coefficients

• γ_i^{liq} is related to excess Gibbs free energy, g^{E} : $\operatorname{RT} \ln(\gamma_i^{liq}) = \left(\frac{\partial N g^E}{\partial N_i}\right)_{T,P}$

12

Mixed Solvent Electrolyte Model [1,2,3]

P. Wang, A. Anderko, R. D. Young, Fluid Phase Equilibr., 203 (2002) 141 - 176.
 P. Wang, A. Anderko, R. D. Springer, R. D. Young, J. Mol. Liq. 125 (2006) 37 – 44.
 B. H. Morland et. al, Ind. Eng. Chem. Res. 58 (2019), 22924 – 22933.

$$g^E_{LR}$$
 : Debye-Huckel model

 g^E_{MR} : A function of composition and ionic strength

Institute for Corrosion and Multiphase Technology Department of Chemical and Biomolecular Engineering

Estimating Fugacity Coefficients

- $\varphi_i^{vap} \text{are calculated from equation of state like SRK or Peng-Robinson}$

$$\phi_{i}(T,P,x) = \exp\left(\left(\int_{0}^{P} \left(\frac{\partial Nz}{\partial N_{i}}\right)_{T,P,x_{j\neq i}} - 1\right) \frac{dP}{P}\right) \qquad \text{where, } z = \frac{PV}{NRT}$$

• For example, let the vapor phase be represented by van der Waals equation of state:

Estimating Fugacity Coefficients

Mixed Solvent Electrolyte Model [1,2,3]

• ϕ_i^{vap} are calculated from the Soave – Redlich – Kwong (SRK) equation:

$$P = \frac{RT}{V-b} - \frac{a}{\sqrt{T}V(V+b)} \qquad a = \sum_{i} \sum_{j} x_{i}x_{j}(a_{i}a_{j})^{1/2}(1-k_{ij})$$

$$a_{i} = a(T_{c}, P_{c}) \text{ and } b_{i} = b(T_{c}, P_{c}) \qquad b = \sum_{i} x_{i}b_{i} \qquad Fitting \text{ parameter from expt. data.}$$

1

P. Wang, A. Anderko, R. D. Young, Fluid Phase Equilibr., 203 (2002) 141 - 176.
 P. Wang, A. Anderko, R. D. Springer, R. D. Young, J. Mol. Liq. 125 (2006) 37 - 44.
 B. H. Morland et. al, Ind. Eng. Chem. Res. 58 (2019), 22924 - 22933.

Including Chemical Reactions

• Chemical reactions introduce constraints between chemical potential of species.

$$\sum_{i=1}^{r} \mu_i \nu_i^j = 0$$

 v_i^j represents stoichiometric coefficient of species *i* in the reaction *j*

Molecular Simulations

- Presence of impurities / metal surfaces alter conditions under which water / acid precipitates.
 Why? We can study this using molecular simulations.
- Study nucleation of water in dense phase CO₂ environment
 - a) Homogeneous nucleation
 - b) Nucleation in presence of impurities and/or metal surfaces

Key Takeaways

- A thermodynamic model to predict water/acid solubility in dense phase CO₂ with speciation will be build.
- With the help of molecular simulations, the fundamental mechanisms involved homogeneous and heterogeneous nucleation of water in different conditions will be determined.

Next Steps

- Once we have a working thermodynamic model, we will extend it to include other species like glycols and amines.
- We will combine thermodynamic modeling to corrosion to provide a mechanistic model to predict corrosion rates under different conditions.

Create for Good. RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

Including Chemical Reactions

- Chemical reactions introduce constraints between chemical potential of species.
- Consider a system of r species with q possible chemical reactions. Each chemical reaction is given by:

$$0 \rightleftharpoons \sum_{i=1}^{r} v_i^j B_i \ \forall j \in [1, q]$$

 B_i represents a species and v_i^j represents its stoichiometric coefficient in the reaction j

• For a reaction j, the extent of the reaction ε_j is given by, $dN_i = \upsilon_i^j d\varepsilon_j$, where N_i is the number of moles of the species B_i .

Including Chemical Reactions

• At constant temperature, T and pressure, P, the Gibbs free energy, G is minimized.

 $dG = \sum_{i=1}^{r} \mu_i dN_i$

Now substituting $dN_i = v_i^j d\varepsilon_j$

$$\Rightarrow dG = \sum_{j=1}^{q} \left(\sum_{i=1}^{r} \mu_{i} \nu_{i}^{j} \right) d\varepsilon_{j}$$

$$\left(\frac{\partial G}{\partial \varepsilon_j}\right)_{T,P,\{\varepsilon_{k\neq j}\}} = \sum_{i=1}^r \mu_i \nu_i^j = 0$$

This constraint can be written in terms of activity coefficients.

