

CO₂ Workgroup

Report-out 3Q2022 API ERG

Team ERG Assignment

- 1. Identify CO₂ applicable:
 - ✓ Regulations
 - ✓ Resources & Best Practices
- 2. Perform a Gap Analysis
- 3. Provide recommendations in 3Q2022 API ERG meeting

Methodology CO₂ – API ERG Team Team 1 Ο ✓ ExxonMobil Pipeline CO₂ Resources & BP ✓ Oxy ✓ Oxy Gap ✓ Chevron Research Denbury Analysis Denbury Kinder Morgan \checkmark Phillips 66 \checkmark ✓ API ERG advisor Kinder Morgan \checkmark Team 2 Ο ✓ AOPL/API ERG advisors CO₂ Regulations ✓ ExxonMobil Pipeline **Recommendations** Phillips 66 \checkmark Kinder Morgan \checkmark

✓ AOPL advisor

Regulations Conclusions

- Current emergency response regulations cover any type of hazardous liquids. CO₂ can be addressed within our actual emergency response plans. Tactics may need to be updated.
- 2. Emergency response plans (including OCC*), procedures and training may need to address CO₂ specific hazards.
- 3. Stakeholders, including industry, may demand more explicit requirements or guidance on the specific needs of CO₂ pipelines.

Resources & Best Practices

Conclusions

- 1. Controlling/isolating the source and public safety are the most important actions during the initial phase of a response
- 2. A guidance document is needed for local emergency responders to make decisions regarding initial evacuations or shelter in place.

Current On-Going Work

CO₂ ER Tactical Guidance Document

- 1. A committee was formed to prepare the tactical guidance document in late 2022
- 2. Members from Oxy, Chevron, P66, Kinder Morgan, Exxon, and Denbury participated on the committee
- The first draft tactical guidance document has been completed and will be reviewed by the committee prior to the API/LEPA ER Work Group meeting on Feb 28-Mar 1

CO₂ ER Tactical Guidance Document Contents

Contents

Introduction	2
Intended Audience	2
Current Applicable Federal Regulations	2
Acronyms and Abbreviations	3
1. Transportation of Carbon Dioxide (CO2) in Pipelines	5
2. Characteristics of CO ₂	5
2.1. Physical Hazards	5
2.2. Oxygen Displacement	6
2.3. Exposure Limits	7
3. Emergency Preparedness and Planning	7
3.1. Community/Stakeholder Outreach and Liaison	7
3.2. Response Drills & Exercises	8
3.3. Training	9
3.3.1. Hazardous Waste Operations and Emergency Response Standard (HAZWOPER)	10
3.3.2. Incident Command System (ICS) Training	12
4. Dispersion Modeling Best Practices	12
5. CO ₂ Pipeline Leak Detection & Identification	14
5.1. Physical Identification	14
5.2. Remote Identification	14
5.3. Supplemental Identification Methods	15
6. Internal Notification Protocols	16
7. Reportable Release Thresholds	16
7.1. Information to Provide to First Responders During Agency Notifications	
8. Third Party Notification of a CO ₂ Pipeline Release	
9. CO ₂ Pipeline Release Response Actions	19
9.1. Emergency Responder Safety	19
9.2. Isolation Strategies	21
9.2.1. Controlled Venting or Blowdown	21
9.2.2. Forced Air Displacement	22
9.3. Real Time Plume Predictions & Surveillance	23
9.4. Air Monitoring Strategies	23
9.5. Incident Management	25

INDOOR CARBON DIOXIDE LOADING FOLLOWING A SIMULATED CARBON DIOXIDE PIPELINE RELEASE: RESULTS & CONCLUSIONS

CTEH, LLC February 15, 2023

DRAFT

Information and data shown is "draft" and has not been validated or peer reviewed; for informational purposes only

Study Design – CO₂ Source

- CO₂ was supplied from a main distribution pipeline.
- Flow was controlled using a combination of chokes and valve.

CO₂ Source Components

Carbon Dioxide (CO ₂)	≥ 99.3%	≥ 993,000 ppm
Hydrogen Sulfide (H ₂ S)	< 0.001 %	< 10 ppm
Methane (CH₄)	0.30%	3,000 ppm
Nitrogen (N ₂)	0.30%	3,000 ppm

CTEH

Study Design – Exposure Chamber Setup

- Two approximately 28' travel trailers were placed in a 40' x 40' tent.
- CO₂ delivery pipelines positioned at ground level in front of and behind the trailers.
- Weights and visqueen used to attempt a sealed environment.
- CO₂ was released at height of approximately
 3' and 6'.
- Fans were positioned in the corners and center of the tent ends to facilitate mixing.

Study Design - Instrumentation

- CO₂, O₂ measured using telemetering AreaRAEs.
- AreaRAE CO₂ measuring range: 50,000 ppm.
- AreaRAEs were placed:
 - Center of the tent near ground level and breathing zone height.
 - Within the tent on the top of the roof of each trailer.
 - Near the center of each trailer interior near floor level and breathing zone height.
- An RKI Eagle2 was used to measure concentrations of CO₂ greater than 50,000 ppm.

Study Design – Participating Personnel

- Michael Lumpkin, PhD, DABT Study Director
- Angie Perez, PhD, CIH
- Jason Callahan, MS, CIH, CSP
- Cole Ledbetter, CIH, CSP
- Ernie Shirley
- Taylor Simoneau

Trailer Floor and Breathing Zone CO₂ Time Profiles

14

- CO₂ floor and BZ concentrations increase linearly at 10K and 20K ppm.
- 30k ppm exhibited a supralinear* increase in BZ as floor CO₂ becomes saturated.

*Supralinear = more than linear, less than exponential

Trailer Floor and Breathing Zone O₂ Time Profiles

- Oxygen decrease appears to be mostly associated with CO₂ concentrations >30,000 ppm.
- Oxygen never fell below 19.5%.

CO₂ Maximum Loading Test: CO₂ and O₂ Time Profile

- Goal to understand catastrophic displacement of O₂ with CO₂.
- Study aborted at approximately 20 min. due to an enclosure leak.
- Measured CO₂ concentrations were 90,000 ppm at the stop time.
- O₂ decreased to 18.2% within the tent.
- Minimum oxygen inside trailer with opened windows was 19.5%.
- O₂ not affected in trailer with closed windows.

CO₂ Maximum Loading Test: CO₂ and O₂ Time Profile

Tent CO₂ and O₂ Concentrations

Trailer CO₂ and O₂ Concentrations

21.0

20.5

20.0 📌

19.5 ^(%)₂₀

19.0

18.5 18.0 21.0

20.5

20.0 * 19.5 8

19.0

18.5

18.0

21.0 20.5

20.0 * 19.5 (%) 70

19.0

18.5

18.0 21.0 20.5

20.0 * 19.5 8

19.0

18.5 18.0

30

24

Information and data shown is "draft" and has not been validated or peer reviewed; for informational purposes only

Analysis: Potential for O₂ Deprivation

- Decreases in trailer O₂ content were observed at concentrations of approximately 30,000 ppm or greater.
- However, O₂ within the trailers remained greater than 19.5% at all CO₂ concentrations up to and including 40,000 ppm.
- During the maximum CO₂ test, O₂ decreased to 18.2% within the breathing zone of the tent when CO₂ concentrations reached 87,000 ppm.
- The closed window trailer did not show an O₂ decrease during the maximum CO₂ test.

Analysis: Shelter-in-Place Implications

- Equilibrium levels of CO₂ up to and including IDLH were slow to infiltrate test trailers when windows and doors were closed.
- O₂ in closed trailers did not fall below 19.5% regardless of whether outdoor concentrations were at equilibrium for a duration of time or were quickly elevated to a peak for 20 minutes (maximum test)
- Shelter-in-place is a viable, health protective option up to four hours following a CO₂ release (and possibly longer).
- The effectiveness of shelter-in-place is less certain for residences that are significantly leakier than the trailers used in this experiment.