

Databasing information for existing pipeline infrastructure / Dual-use infrastructure – technical considerations for dual-use transport of LPG/LNG/H<sub>2</sub>/CO<sub>2</sub>/Ammonia

Mike Kass, Oak Ridge National Laboratory

US Department of Energy - Roadmap for CO2 Transport Fundamental Research Workshop 22 Feb 2023 Dublin, Ohio

ORNL is managed by UT-Battelle LLC for the US Department of Energy



As we see it, there are two primary questions regarding dual purposing:

- Can existing natural gas (NG) pipelines be repurposed for hydrogen, CO<sub>2</sub> and/or ammonia?
- Can liquefied natural gas (LNG), liquid petroleum gas (LPG), and ammonia infrastructure be repurposed for CO<sub>2</sub> and hydrogen (or ammonia)?

#### Technical considerations based on:

- Compatibility with infrastructure materials and component performance (includes impurities)
- Desired physical state (liquid or gas)



#### Fluid properties relevant to compatibility

| Gas/fluid type | Structure                                        | Polarity     | Solubility in water at 20°C<br>and 1 atm (g/kg <sub>water</sub> ) |
|----------------|--------------------------------------------------|--------------|-------------------------------------------------------------------|
| Hydrogen       | н—н                                              | Nonpolar     | 0.0016                                                            |
| Carbon dioxide | 0=C=0                                            | Polar        | 1.69                                                              |
| Ammonia        | н_м—н<br>И                                       | Highly polar | 529.0                                                             |
| Methane        | Н<br> <br>Н—С—Н<br> <br>Н                        | Nonpolar     | 0.023                                                             |
| Propane        | ңн<br><sup>н</sup> ,с, <sup>с</sup> ,с,н<br>нннн | Nonpolar     | 0.0047 (at 0°C)                                                   |

Kational Laboratory

3

Quickest, most efficient and cost-effective means of transporting fuels and/or CO<sub>2</sub> is to repurpose existing natural gas (NG) pipeline infrastructure

- Over 300,000 miles of natural gas transmission pipelines and 1800 compressor stations in the continental U. S.
- These pipes can have diameters up to 1.2 m (48 in.) and are composed almost entirely of low-carbon steels, though some cast, ductile, and wrought irons are still in use.
- The gauge pressure in these systems can range from 1.4 to 10.3 MPa (200 psi to 1,500 psi). For most transmission systems the line pressure is relatively constant
- Pipes are designed with safety factors of 1.25 or 1.5 depending on the population density

Vational Laboratory



# Previous and current repurposing compatibility studies have focused solely on the piping sections

Photos by Unknown Author is licensed under <u>CC BY</u>



- API steel grades: A25, A, B, X42, X52, X60, XC60, X70, X80 and X100
- Seamless or welded
- Many pipes have an inner epoxy coating to reduce friction and wear (and also corrosion)
- Numerous compatibility studies with hydrogen



- Consists of compressors, odorant inputs, gages, valves, meters, regulators, etc
- Many different components containing a variety of ferrous and nonferrous metals and polymers (plastics and elastomers)
- Very little compatibility studies with hydrogen

5

### Hydrogen transport in NG pipelines

- Hawai'iGas has been transporting 10-12% H<sub>2</sub> in its pipelines for the past 50 years
- Several field demonstrations are being established by pipeline manufacturers to evaluate H<sub>2</sub> blends with NG
- General assessment that blends less than 10% are suitable for most pipeline steel grades. Lower yield strength steels are mandated:
  - ASME B31.12 recommends maximum grade of X52
  - API Guidelines call for a maximum yield strength of 827 MPa (120ksi)
- Impurities can accelerate stress corrosion cracking
- Impacts of impurities on polymer performances at NG pipeline conditions is not well known
- End use systems may not operate properly with hydrogen blends. This is also true for infrastructure components (e.g. flow meters)



### The majority of NG pipelines operate under conditions slightly below the CO<sub>2</sub> critical point

- Typical range is 800-1,000psi, but some systems operate up to 1,500psi (103bar) and down to 200psi (13.8bar)
- Gas or liquid phases fluctuate depending on temperature
- Existing CO<sub>2</sub> pipelines operate above 1,900psi (130bar)
- Not a region that is well-studied, especially for addressing impurity impacts
- Netherlands repurposed a 26 inch, 51-mile NG pipeline for CO<sub>2</sub> transport as a gas at 101-304psi (7-21bar) at a rate of 300Mt/year

**CAK RIDGE** 



### What we know about CO<sub>2</sub> compatibility

*For Metals:* Extensive body of literature exploring CO<sub>2</sub> corrosion of pipeline steels.

- Corrosion requires the presence of aqueous condensate (carbonic acid is formed)
- Studies have shown that H<sub>2</sub>O, H<sub>2</sub>S, SOx and O<sub>2</sub> can accelerate corrosion. Less well understood are NOx contributions, which is a primary product of combustion. Note that NOx will form nitric and/or nitrous acid with water.

For Polymers: Much less studied, especially at conditions accompanying NG pipelines.

- Known solvent for some polymers
- High swell observed for some elastomers
- Limited range of polymers studied

#### Important knowledge gaps include:

- Contribution of impurities (including NOx) to aqueous corrosion
- Corrosivity in liquid and gaseous CO<sub>2</sub> at conditions below the critical point
- Aluminum, stainless steels, zinc, brass, and other steel grades that are used extensively in compressor/regulator stations
- Many compressor station polymers not evaluated, especially at pipeline conditions



## NG Pipelines: Ammonia would primarily exist as liquid

- Ammonia is widely and safely transported *in systems specifically designed for handling ammonia*.
- NG pipeline steels are suitable for ammonia
- Oxygen impurities can promote stress corrosion cracking
- Ammonia transport via NG pipeline sections is feasible, but compressor stations are not suitable. Fluorocarbons (FKMs) and some NBRs are not suitable.

**CAK RIDGE** 





Repurposing LNG or LPG infrastructure for sCO<sub>2</sub>, hydrogen, or ammonia.



• LNG/LPG conditions

**CAK RIDGE** 

- LNG tanks are maintained at -161.5°C (-260°F) and 0.34 bar (5 psi)
- LPG is typically stored at pressures up to 1.7 bar (25 psi) and ambient temperature
- H<sub>2</sub>: Liquefying and shipping hydrogen requires chilling it to -253 degrees Celsius. Nearly 100 Celsius degrees colder than temps needed to transport LNG
- **sCO<sub>2</sub>**: CO<sub>2</sub> cannot liquefy in LNG and LPG tanks (pressure too low)
- Ammonia: will exist as liquid in LNG and LPG systems
- Other considerations include inherent impurities and the high solvency of sCO<sub>2</sub> with many elastomers
- Bottom Line: Dual-purpose infrastructure will need to be designed specifically for LiqH<sub>2</sub> and sCO<sub>2</sub>.

CO<sub>2</sub> Phase Diagram Supercritical Critical Di fluid point 72.9 atm Liquid Pressure (not to scale) 5.1 atm Triple Solid point 1 atm Gas -56.7 °C 31 °C -78.5 °C Temperature (not to scale)

#### Repurposing ammonia infrastructure for sCO<sub>2</sub> or hydrogen

- Ammonia is typically stored/transported as a liquid under pressure to 2bar (29psi) at atmospheric temperature
- Pressures are too low for dense CO<sub>2</sub> and liquid H<sub>2</sub>
- Tanks usually composed of carbon and stainless steels. Suitability uncertain for use with hydrogen/NG blends
- Metal components are probably suitable for use with gaseous CO<sub>2</sub>, polymer seals need to be evaluated
- Bottom line: more structural operational information needed







# Properties of interest include:



- Polymers
  - mass/volume/hardness
  - Compression set (elastomers only)-
  - Spalling/delamination of epoxy coatings
  - DMA
  - GC-MS/FTIR/Raman/X-ray
  - Tensile strength
- Metals

**CAK RIDGE** 

National Laboratory

- Mass loss
- Corrosion characterization
- Surface chemistry
- Yield strength







Temperature



# We recently completed a study examining the materials compatibility of repurposing NG infrastructure for $H_2$ , $CO_2$ and/or $NH_3$ transport

- Effort supported by Tim Reinhardt and Evan Frye (Division of Methane Mitigation Technologies)
- Outcomes:

CAK RIDGE

- Material compatibility assessment based on available literature studies
  - Only study that looked at compressor/regulator stations
  - Identified over 100 components and materials of construction
- GIS analysis of pipelines
- Identified key gaps
- Kass, M. D., Keiser, J. M. et al., "Assessing Compatibility of Natural Gas Pipeline Materials with Hydrogen, CO2, and Ammonia," *J. Pipeline Syst. Eng. Pract.*, 2023, 14(2): 04023007

Subset of tabulated results for polymers (note similar table compiled for metals)

| Component               | Sub component               | Material                                    | Hydrogen<br>Blend | sCO2         | Ammonia      | Comments                                                      |
|-------------------------|-----------------------------|---------------------------------------------|-------------------|--------------|--------------|---------------------------------------------------------------|
| Ball valve              | Valve seat                  | PTFE (Teflon™)                              | Suitable          | Incompatible | Suitable     |                                                               |
|                         | Stem o-ring                 | NBR                                         | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         | Stem packing                | PTFE (Teflon™)                              | Suitable          | Incompatible | Suitable     |                                                               |
| afety shut valve        | Diaphragm                   | NBR with nylon<br>reinforcement             | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         | Valve heat/seat             | Polyurethane                                | Suitable          | Incompatible | Incompatible |                                                               |
|                         | o-rings                     | NBR                                         | Suitable          | Incompatible | Questionable |                                                               |
|                         | Seal                        | Graphite                                    | Suitable          | Suitable     | Suitable     | not a polymer                                                 |
| Appliance<br>regulators | Diaphragm and<br>valve seat | NBR with and without<br>nylon reinforcement | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         | Valve head                  | NBR                                         | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         | Cap and assembly            | Molded plastic                              | Suitable          | Suitable     | Suitable     | Plastic wasn't specified, but should be ok based<br>on survey |
|                         | o-rings                     | NBR                                         | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         | Valve seat                  | NBR                                         | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         |                             | Silicone                                    | Suitable          | Suitable     | Questionable | Ammonia suitability depends on gas temperature                |
|                         | Lower diaphragm<br>plate    | Polyester                                   | Suitable          | Suitable     | Suitable     |                                                               |
|                         | Diaphragm                   | NBR                                         | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         |                             | Nylon                                       | Suitable          | Suitable     | Suitable     |                                                               |
|                         | Ventualvalaset              | Neoprene                                    | Suitable          | Incompatible | Suitable     |                                                               |
|                         | vent valve/seat             | Delrin (acetal)/NBR                         | Suitable          | Incompatible | Questionable | Depends on the NBR grade                                      |
|                         | Adjustment<br>Ferrule       | Delrin (acetal)                             | Suitable          | Suitable     | Suitable     |                                                               |
|                         | Seal cap                    | Polyethylene                                | Suitable          | Suitable     | Suitable     |                                                               |

### Key Takeaways

- Existing NG pipelines (excluding compressor stations) likely suitable for low blend levels of hydrogen (in NG), gaseous CO<sub>2</sub>, and ammonia
- Existing LNG/LPG infrastructure not currently viable for liquid hydrogen or sCO<sub>2</sub>
- Impurities will be important, especially if switching between fluid chemistries
- Current compressor/regulator stations are unsuitable for use with sCO<sub>2</sub> and ammonia
- Need to consider not just material but component performance
- Obtaining precise material information can be challenging



#### Next Steps

- Obtain more precise operational and material information from industry
- Determine whether existing pipeline safety factors are acceptable
- Improved understanding of impurities and their contributions to hydrogen corrosion, especially at NG pipeline conditions
- Improved understanding of impurities and their contributions to CO<sub>2</sub> corrosion, especially at NG pipeline conditions
- Address key data gaps associated with sCO<sub>2</sub> and polymer compatibility

