WHEN TRUST MATTERS

DNV

Low Temperature Brittleness and Ductile Propagation Testing in CO₂ Depressurizing Scenarios

Roadmap for CO₂ Transport Fundamental Research Workshop

Dr. Ben Hanna

CO₂ Phase Diagrams

Typical operating range for pipelines spans multiple CO_2 phases.

Two options:

- Low pressure gas phase
- High pressure dense phase

As dense phase CO₂ decompresses to atmospheric pressure, the pipe gets very cold.

DNV Spadeadam Test Site

Flange Releases – Low Temperature Leaks

- Spadeadam research on releases from flanges on dense phase CO₂ pipe
- Potential low temperatures on flange and bolts
- Mitigation by insulation

Depressurization Experiments

<u>SS316, 2" OD, 0.335" WT</u>

Release of dense phase $98.2\%CO_2$ -1.8%N₂ mixture from rupture disc

Rapid temperature drop within 30 ms, down to -60°C (-76°F) after 4.5 s

Rise in temperature due to dry-out (no liquid left)

5 DNV©

Munkejord, S.T. et al., International Journal of Greenhouse Gas Control 109 (2021)

Charpy Impact Energy Transition Curve

At very low temperatures, pipe more likely to be brittle.

- Low toughness
- Catastrophic fracture

Base Metal - Impact Curve

Does Brittle Pipe Mean Brittle Failure?

30" OD by 0.360" WT X60 pipe - 50%WT flaw

- Burst tests at decreasing temperatures.
 - Burst pressure did not decrease as the pipe moved from ductile to brittle area of toughness curve.
 - Ductile initiation is typically assumed up to 136°F below what is considered fully ductile.

PRCI Report No. PR-003-00108, 2001

Running Ductile Fracture in CO₂ Pipelines

Fracture control for dense phase CO_2 *pipelines based off of saturation pressure.*

CO2SafeArrest – Test Layout

0.0145

Test 2 14.x mm	Telescopic layout based on increasing required arrest pressure determined by broken* Charpy specimens				Telescopic layout based on increasing required arrest pressure determined by broken* Charpy specimens				
Product ID Pipe ID	146798 4005	146810 4008	146713 4002	146782 4011	146776 4009	146729 4001	146760 4004	146801 4010	Product ID Pipe ID
	4W	3W	2W	1W -	- 1E	2E	3E	4E	
All Avg. (x1.7) [Pa] Broken Avg. (x1.7) [Pa] Rp _{0.2} [MPa]	N S 8.31 7.83 NA NA 502 465	<u>S. N.</u> 8.23 8.23 8.12 7.36 508 507	<u>N</u> <u>S</u> 7.89 7.41 7.25 7.05 492 463	<u>N</u> <u>S</u> 6.19 5.88 6.19 5.88 458 445	<u>S</u> <u>N</u> 6.08 6.37 6.08 6.37 457 450	<u>S</u> <u>N</u> 7.35 7.96 7.35 7.48 463 494	<u>N. S.</u> 7.88 8.08 7.85 8.02 492 501	<u>N S</u> <u>8.01</u> <u>8.33</u> NA NA 478 502	All Avg. (x1.7) [Pa] Broken Avg. (x1.7) [Pa] Rp _{0.2} [MPa]
DWTT Propagation [J] Broken Charpy Energy [J]	6307 7529 NA NA	5289 5236 301 177	4090 5277 190 191	3350 3333 116 121	3235 3364 110 134	4738 4548 253 220	5178 5204 316 343	7317 5599 NA NA	DWTT Propagation [J] Broken Charpy Energy [J]
4. 1 I JI		Expos	red half]	L	Buried	half]	
	Areaster -	The second	al india	the con	and the second se	North Contraction		A CONTRACTOR	
			1			A A SALES)
		atom and a							

Validation of fracture arrest models and design requirements will:

- Eliminate project specific full scale fracture arrest tests.
- Remove excessive conservatism (sufficient wall thickness and material properties identified).
- Reduce costs for new CO₂ pipeline projects.

Results Generated from the Tests

Crack velocities

Theoretical vs. actual crack tip pressure

General Observations from Large-Scale Tests

- CO₂pipetrans
 - 2*16"
- Cooltrans
 - 2*36, 1*24"
- Sarco2B
 - 2*24"
- CO₂SafeArrest
 - 2*24"
- In total 9 tests

DNV-RP-F104

$$\frac{1000*R_{CVN}*E}{\sigma_f^2*\sqrt{R*t}}$$

Safety Factors for Battelle Two-Curve Method (BTCM)

- Two full-size tests as part of COOLTRANS program
 36" OD, 1" WT, X65.
- Needs correction factor of 1.5 on BTCM to correctly predict all failures of Test 1, and correction factor of 2.4 for Test 2.
- A crack will propagate if any part of a crack velocity curve is below the fluid decompression curve.
- Validated for natural gas.

Key Takeaways and Next Steps

- A rapid phase change of CO₂ from liquid to gas can cause auto-refrigeration.
 - The pipeline components can become brittle, which will have deleterious consequences on integrity.
 - There's limited empirical research of this phenomenon on full-sized pipelines.
 - New PRCI project to quantify the likelihood that fracture initiates in a brittle manner.
- Fracture propagation is a point of emphasis for dense phase CO₂ pipelines.
 - High saturation pressures require material properties that vintage pipelines likely do not possess.
 - Add crack arrestors
 - There's limited empirical research to validate BTCM or extend the method in RP-F104 to cover most scenarios.

WHEN TRUST MATTERS

DNV