Corrosion in CO₂ Transmission Pipelines Joint Industry Project (CCT JIP)

Yoon-Seok Choi

Associate Director for Research Institute for Corrosion and Multiphase Technology Ohio University

Create for Good.

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

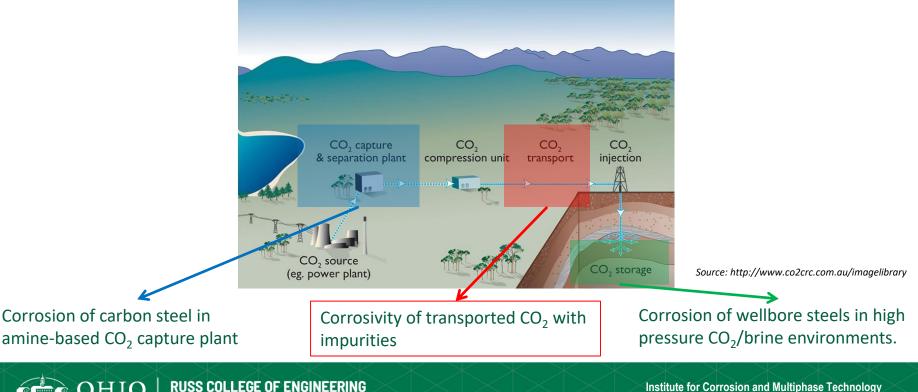
Roadmap for CO₂ Transport Fundamental Research Workshop February 2023

Contents

Corrosion in CO₂ Transmission Pipelines (CCT) JIP

- Introduction
- Gaps and Challenges
- CCT JIP
 - Objective, goal, and scope of work
 - Equipment
 - Sponsors
- Key Takeaways and Next Steps

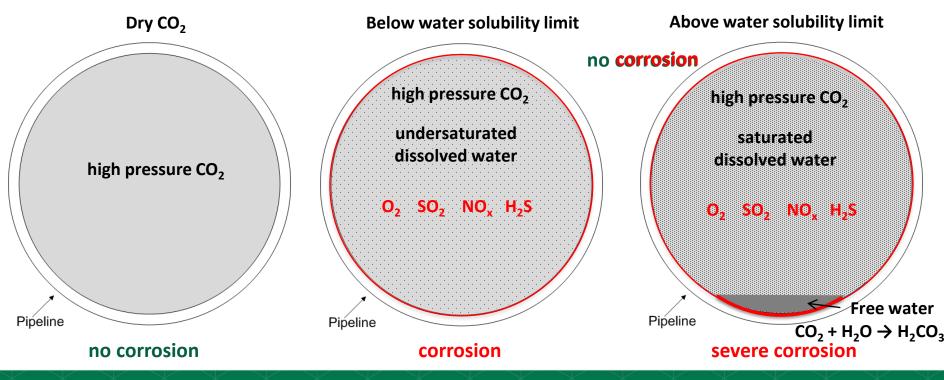
Introduction



RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY **Create for Good.**

Introduction

AND TECHNOLOGY


CO₂ Corrosion in CCS (Carbon Capture and Storage) Process

Department of Chemical and Biomolecular Engineering

Introduction

Corrosion Problem in CO₂ Transport Pipelines

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY Create for Good.

What we do know...

- Dry CO₂ does not corrode carbon steel.
- Aqueous corrosion rate of carbon steel is very high under high pressure CO₂ conditions.
- Aqueous corrosion mechanisms in high pressure CO₂ are similar to those in low pressure CO₂ conditions.
- Negligible corrosion occurs at water-undersaturated and water-saturated conditions in pure dense phase CO₂.
- Corrosion occurs at water-undersaturated conditions in dense phase CO₂ with the presence of impurities (O₂, SO₂, NO₂, H₂S, etc.).
- Localized corrosion occurs at water-unsaturated conditions in dense phase CO₂ with the presence of impurities and some flow.

7

What we don't know...

- How impurities affect the H₂O solubility/acid formation in a dense CO₂ phase.
- The effect of impurities on corrosion in a dense CO₂ phase.
- The effect of pressure, temperature and flow.
- Long-term corrosion behavior of carbon steel in a dense CO₂ phase (at constant impurities concentration).
- Mechanisms of uniform and localized corrosion in dense phase CO₂ with impurities.

What we need to build...

- A thermodynamic model for predicting H₂O behavior in dense phase CO₂ with impurities
- Mechanistic model that can predict the rate of corrosion of steel in dense phase CO₂ and in aqueous phase with impurities, that accounts for the effect of all key variables such as: concentrations, pressure, temperature, flow, etc.

Corrosion in CO₂ Transmission Pipelines (CCT) JIP

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY Create for Good.

Objective and Goals

Objective: Identify and quantify the key issues which impact corrosion of materials specifically relating to the integrity of structures for the CO₂ transport pipelines.

Goals:

- To understand the effect of a wide range of impurities (O₂, SO₂, NO₂, H₂S, etc.) on <u>the water/acid</u> solubility and the speciation in dense phase CO₂.
- To develop a <u>thermodynamic model</u> for predicting the water/acid solubility and the speciation in dense phase CO₂ in the presence of impurities.
- To determine impact of <u>environmental parameters (pressure, temperature, flow, and impurity</u> <u>types and concentrations</u>), both individually and synergistically, on <u>steel corrosion</u> in both dense phase CO₂ and aqueous phase in the presence of impurities.
- To develop a <u>mechanistic model</u> to predict the corrosion processes in order to help determine facility lifetime.

Scope of Work

Key Mechanistic Stages in Dense Phase CO₂ Corrosion

Operating condition:

- C_{H2O} < Solubility Limit
- Presence of Impurities (SO₂, NO₂, H₂S, O₂)

Upset condition:

- C_{H2O} > Solubility Limit
- Presence of Impurities (SO₂, NO₂, H_2S , O_2)

Initial stages

Water/acid droplet or layer formation

Intermediate stages

- Chemical reactions in the electrolyte.
- Chemical/Electrochemical reactions at the steel surface
- Nucleation of corrosion products at the steel surface

Effect of impurities

- Effect of droplet volume
- Effect of pressure and temperature
- Effect of flow
- Uniform/localized corrosion

Final stages

Growth and transformation of corrosion products

Scope of Work

The CCT JIP investigates effects of a wide range of impurities (H_2O , O_2 , SO_2 , NO_2 , H_2S , etc.), in particular combinations, on both thermodynamic properties and corrosion behavior. The research is divided into three main parts:

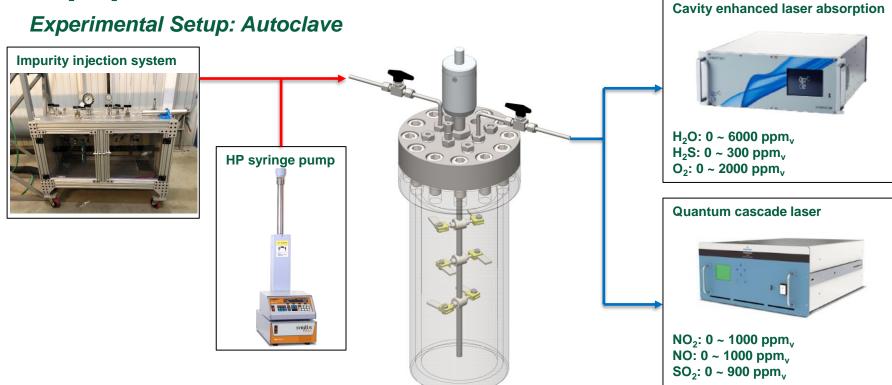
- Part 1. Thermodynamic study.
- Part 2. Corrosion study.
- Part 3. Model development.

Part 1. Thermodynamic Study

- Develop a thermodynamic model of solubility of water/acid and speciation in dense phase CO₂ in the presence of impurities like SO₂, NO₂, H₂S and O₂.
 - Task 1-1: Perform a systematic experimental study to investigate the solubility and the conditions under which the impurities react to form acids.
 - Task 1-2: Employ molecular simulations to study the homogeneous and heterogeneous nucleation of water (on metal surface or around impurities) in the dense phase CO₂ environment.
 - Task 1-3: Develop a thermodynamic model by fitting the studied conditions (<u>Topic 1A</u>).

Part 2. Long-Term Corrosion Study

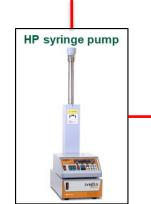
- Evaluate long-term corrosion behavior under water unsaturated dense phase CO₂ in the presence of various impurities.
 - Task 2-1: Glass cell experiments
 - Task 2-2: Autoclave experiments
 - Task 2-3: Flow loop experiments



Part 3. Corrosion Modeling

- Develop a mechanistic model, which can predict the rate and mechanism of corrosion of steel in dense phase CO₂ with impurities.
 - The data from the experimental part of the study will be used to focus and guide the modeling effort.
 - The thermodynamic model developed in Part 1 will be connected to the corrosion model.
 - The existing model of CO₂ corrosion in the ICMT (MULTICORP[™], TOPCORP[™], and WELLCORP[™]) will serve as a good platform for building the basic model needed in this study.
 - Extending the model to much higher CO₂ pressures and adding the effect of impurities on corrosion behavior is the main focus when constructing the new model envisioned in this task.

Equipment



Experimental Setup: HPHT Thin Channel Flow Cell (TCFC)

Impurity injection system

18

CCT JIP Sponsors

- 1. BP
- 2. Chevron
- 3. ConocoPhilips
- 4. Enbridge
- 5. Equinor
- 6. EVRAZ North America
- 7. ExxonMobil
- 8. Occidental Oil Company
- 9. Shell
- 10. Tenaris

Kinder Morgan, Saudi Aramco, Petrobras, Petronas, TotalEnergies showed their interest

- Duration: 3 years
 - January 2023 December 2025
- Budget: \$50,000 / year / company

Key Takeaways and Next Steps

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY Create for Good.

Key Takeaways

- <u>Thermodynamic and corrosion prediction models</u> which can predict the water solubility/acid formation and corrosion of carbon steel in dense phase CO₂ environments with impurities covering various scenarios for CO₂ transportation pipelines.
- <u>An improved understanding of the thermodynamic behavior of dense phase CO₂ in the presence of different impurities.</u>
- <u>An improved understanding of the corrosion behavior of carbon steel in dense phase CO₂ with impurities.</u>
- <u>A scientific and engineering basis</u> for establishing safe CO₂ specifications.
- <u>Education of students and broader engineering communities</u> regarding the corrosion of CO₂ transmission pipelines.

Next Steps

- Mitigation of corrosion:
 - Corrosion inhibitors
 - Corrosion resistant alloys (CRAs)
- Effect of other impurities (glycol or alcohol) and low temperature.
- Effect of upset conditions.
- Establish safe CO₂ specifications considering the risk of corrosion.

Create for Good.

RUSS COLLEGE OF ENGINEERING AND TECHNOLOGY

Corrosion in CO₂ Transmission Pipelines Joint Industry Project (CCT JIP)

Roadmap for CO₂ Transport Fundamental Research Workshop 2/21/2023 Institute for Corrosion and Multiphase Technology

