SAND2023-12493PE

Metallic and Non-Metallic Material Compatibility in Super-Critical CO2 Environments

Roadmap for CO2 Transport Fundamental Research WorkshopColumbus, OhioFebruary 21 - 23, 2023

Topic 1C. Impact of impurities on non-metallic seals

PRESENTED BY

Bonnie Antoun, Nalini Menon

Sandia National Laboratories, Livermore CA

This work was supported by the Department of Energy (DOE) Supercritical Transformational Electrical Power (STEP) program FY2019-21

Sandia National Laboratories is a multimission Laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE+NA0003525.

Environments + materials = Compatibility

ጠ

Temperature	Component	Alloy	Туре	
T ≤ 250°C	Compressor, Gas cooler	304SS, P91, T22	Low cost austenitic or ferritic alloys	
T ≤ 400°C	LT recuperator	347SS, 310SS, 316SS	Austenitic alloys recommended	
T ≤ 550°C	HT recuperator, LT primary heater, LT Turbine	347SS, 310SS, 316L	Austenitic alloys with a lower level of Ni, Cr and Co (316)	
T ≤ 650°C	HT Turbine, HT Primary Heater	Haynes 230, IN-617, 800H	Higher Ni/Cr alloys are recommended	
T > 650°C	Very high temperature applications	Haynes 282, IN-713, IN-718 and IN-738, IN-690, IN-693, IN- 725 and IN-740 and EP823	Little testing completed	

Source: Review of supercritical carbon dioxide (sCO2) technologies for high-grade waste heat to power conversion Matteo Marchionni1 · Giuseppe Bianchi1 · Savvas A. Tassou1 Received: 5 October 2019 / Accepted: 28 January 2020 / Published online: 11 March 2020

Mechanisms of degradation

Mechanisms with impurities present

- Faster oxidation rates in Fe and Ni-based alloys
- Moisture increases the number of grain boundaries which act as diffusion routes leading to carburization beneath the scale

$$CO2(g) \rightarrow CO(g) + (1) \frac{1}{2} O2(g)$$
$$2CO(g) \rightarrow CO2(g) + C(s) (2)$$

Source: A Tracer Study on sCO2 Corrosion with Multiple Oxygen-Bearing Impurities Juho Lehmusto · Anton V. Ievlev · Ercan Cakmak · James R. Keiser · Bruce A. Pint; Oxidation of Metals (2021) 96:571–587

Measured oxide thicknesses after 1,000 h at 750 °C in 30 MPa sCO2 with 50 ppm 16O2 and H2 18O

Component Exposure Conditions

Source: Influence of CO2 Purity on the Corrosion of Structural Alloys for Supercritical CO2 Power Cycles; Matt Walker[1], E. Withey[2]; 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, PA March 28th 201

Corrosion examples: Corrosion oxides on commercial and model alloys

Table 1	The chemical composition	ns of the alloys	, measured by	inductively	coupled plasma	and combus-
tion ana	lyses in weight%					

Alloy	Fe	Ni	Cr	Al	Other
Fe15Cr	85.1	-	14.9	-	_
HR3C	51.0	20.4	25.7	-	1.2Mn, 0.5Nb, 0.4Si, 0.3Co
Ni22Cr	_	78.0	21.9	_	-
Ni22Cr+1Al	_	76.2	22.8	1.0	-
Ni22Cr+2Ti	-	76.2	21.8	-	2.0Ti
Ni22Cr+1Al,2Ti	_	75.1	21.8	1.1	1.9Ti
282	0.2	57.1	19.6	1.6	6Co, 6Mo, 2.2Ti

Source: A Tracer Study on sCO2 Corrosion with Multiple Oxygen-Bearing Impurities Juho Lehmusto · Anton V. levlev · Ercan Cakmak · James R. Keiser · Bruce A. Pint; Oxidation of Metals (2021) 96:571–587

Polymer compatibility in sCO₂ energy conversion systems

Environments + materials = Compatibility **FKMs PTFE** sCO₂ environments **FFKM Pressure transducers Materials** Buna N **Polymeric** Temperatures at 25-700°C **HNBR** Pressures from 0.1 - 25 MPa materials for Neoprene sCO₂ Cycling conditions Pollutants (SOx and NOx) environments PEEK **Corrosive by-products** PPS Presence of humidity HDPE Pressure relief valves POM Nylon 6,6 For turbines: **PUR** Inlet total pressure - 21 MPa (3045 psi) Inlet total temperature - 753 K (480°C) Mass flow rate -1270.5 kg/s Valve seats EPR Outlet static pressure – 7.35 MPa (1065 psi) **EPDM** Permeation Diffusion Solubility S/D Gas type coefficient (D) coefficient (Q) coefficient (S) N2 1 1 1 1 **High solubility** CO2 24 24 1 24 and easy CH4 3.4 7 0.7 4.9 permeation Turbo machinery seals He 0.004 15 60 0.25 through

Approximation of permeation, diffusion and solubility coefficients of various gases through common elastomers 3/1/2023 STEP PROGRAM |

2.2

1.7

02

3.8

polymer

1.29

Polymer compatibility in sCO₂ – Mechanisms of failure

Influenced by High pressure (> 10 MPa) Higher CO₂ concentration in gas mixture Higher solubility of CO₂ in elastomer High decompression rate >0.1 MPa/min Elastomer microstructure O-rings with less design-imposed constraints

Amorphous or semi-crystalline polymer

Degree of crystallinity, substitution on backbone, molecular weight, crosslink density, glass transition temperature T_{g} , chain alignment/ packing

Examples of failures in elastomers in sCO2 service due to explosive decompression

Failure seen with Viton Oring due to sCO2 exposure

STEP PROGRAM REVIEW JAN 30-31 2023

Sandia's sCO2 testing capability

- •Constructed in 2014 for testing of materials in the presence of liquid (supercritical) carbon dioxide (CO2) at high pressure (maximum operating pressure 3500 psi) and temperature (up to 650°C); flow-through design
- •System was modified in 2016 for corrosion studies with the removal of the CO2 compressor, enabling the use of gaseous CO2 at lower pressure (up to 300 psi) at 500C
- •Research and development involving materials in sCO_2 up to 250°C for polymers and up to 650°C for metal alloys
- •Collaborative work and proposals for polymers and metal alloy work in Co2 and SCO2 invited

- Run probes of 2 different alloys in two separate temperature ranges in CO₂
- Long duration tests up to 1500 hours
- Witness coupons (3) of each alloy included for extraction at 500 hour intervals (500hrs, 1000hrs, and 1500hrs)
- Lower T Candidates: 9Cr-1Mo (grade 91), 316, 304, 310, 347H
- Higher T Candidates: 800H, HR120, 617, 625, 230, 740H

Statistical Analysis Summary of Alloy Weight Change Differences for RG and IG CO₂

	350	°C	600°C		
Alloy	500 hrs	1000 hrs	500 hrs	1000 hrs	
F22	IG = RG	IG = RG	IG = RG	IG = RG	
F91	IG = RG	IG = RG	IG = RG	IG = RG	
304H	IG = RG	IG = RG	IG = RG	IG = RG	
316H			IG = RG	IG = RG	
347H	IG = RG	IG = RG	RG > IG	IG = RG	
800H	IG = RG	IG = RG	IG = RG	IG = RG	
HR120	IG = RG	IG = RG	IG = RG	IG = RG	
617	IG = RG	IG = RG	IG = RG	RG > IG	

Gas chemistry (RG vs IG CO2) has very little influence on alloy corrosion

OFFICIAL USE ONLY

Metal alloy compatibility in sCO₂ – FY 2019-2020

Effect of High Temperature CO₂ on Haynes 230 and 800H Alloy

- High temperature CO_2 on Haynes 230 and 800H alloys was investigated by subjecting the alloy samples to CO_2 at 650°C for 500, 1000, and 1500 hours.
- Atmosphere was maintained with a constant flow of CO_2 from a gas cylinder at 150-200 mL/min
- After CO₂ exposure, the tensile specimen samples were tested in tension at 750°C to failure
- For the eight tensile tests, data was collected at 1000 Hz for the following signals: displacement, 50-kip load cell, 10-kip load cell, extensometer, top thermocouple, and bottom thermocouple

Haynes 230 Alloy

OFFICIAL USE ONLY

Polymer compatibility in sCO₂ – FY2019-21

Thermal behaviors of typical polymers at 100°C and 150°C temperatures at 20 MPa sCO₂ pressure in a 1000-hour exposure

Pressure behavior of typical polymers at 10 and 40 MPa sCO₂ pressures at 100°C temperature in a 1000-hour exposure

Behavior of soft polymers in the compressed state mimicking O-rings in sealing applications in sCO2 in a 1000-hour exposure

O-rings with a barrier coat tested for diffusion mitigation of sCO₂

Investigating the effect of thermal cycling (50°-150°-50°C) under steady 20 MPa sCO₂ pressure for 50 and 100 cycles

Sandia's CO2 and sCO₂ testing capability

•In-situ monitoring of polymer degradation and failure modes

•Test methods and standards development

•Cycling experiments with sCO₂ pressure and thermal changes

•Solubility and permeation of sCO₂ in polymers and influence of fillers and plasticizers on this phenomenon

•Factors controlling rapid gas decompression – depressurization rates

•Effect of impurities such as H₂S and chemical aging of polymers

Samples were introduced as whole O-rings to test Periodic removal of O-rings at 200 hours, 600 hours and at 1000 hours followed by cutting them to characterization test specimen dimensions

Results and Discussion – Major takeaways

Based on experiments on 13 polymers including both elastomers and thermoplastics and under conditions of testing shared, the following are high level findings:

- Thermoplastics showed minimal damage from sCO2 exposures compared to elastomers
- Elastomer showed internal cracks, surface texturization, structural changes, compression set changes
- Increasing temperatures accelerate damage mechanisms for almost all elastomers
- Increasing pressures in combination with long times of exposure accelerated damage in even robust polymers
- Increasing number of temperature cycles showed varying levels of damage in polymers
- Physical effects seen in the form of cracks inside the polymer and surface texturization
- Chemical effects seen in the form of changes in glass transition temperatures, storage modulus and structural changes in FTIR

Dynamic Mechanical Thermal Analysis (DMTA) on different elastomers Exposure to 40 MPa sCO₂ at 100°C temperature

STEP PROGRAM REVIEW JAN 30-31 2023

Optical microscopy images on Neoprene 100°C exposure @ 20 MPa sCO₂ pressure

Attenuated Total Reflectance FTIR on polymers

Micro-Computed tomography images for FFKM FF202 and EPDM rubbers 150°C exposure @ 20 MPa sCO₂ pressure

Unexposed

Exposed

400-475 microns length cracks in the interior

In both polymers cracks appear as early as after 200 hours of exposure at 100°C

STEP PROGRAM REVIEW JAN 30-31 2023

Polymers held in compression fixture during test (25% deflection) 20 MPa sCO₂ pressure at 100°C

Compression fixtures designed to hold the O-rings inside the sCO2 autoclave

Picture of whole O-rings after compressed exposure to 20 MPa sCO2 at 100°C: from left – top row: Viton sample 1, Buna N, EPDM, HNBR; bottom row – Viton sample 2, EPR, Neoprene (uncoated) and Neoprene (coated)

Elastomer-sCO₂ effects impact mechanical properties

SCO₂-exposed Neoprene fails at lower % strain over unexposed

Results and Discussion – Major takeaways

- Polymer backbone and microstructural details showed a great influence on behavior in sCO₂ environments
 - Presence of polar functionality -C=O, -C-Cl, -C-CN or -C=C- (double bonds) on backbone in polymers tested increase propensity for sCO₂ effects – for e.g. higher storage modulus with/without increase in T_g
 - Large pendant-group atoms (such as fluorine) can provide steric hinderance and decrease sCO₂ diffusion for e.g. FF-202, FKM and PTFE
 - EPDM and EPR show property changes but less propensity to accelerated sCO₂ attack
 - Hard to separate influential factors in a given polymer type due to lack of information on the COTS materials used
 - influence of molecular weight, degree of crystallinity, crosslink density, fillers and additives, choice of polymer base with custom polymers (supplier-to-supplier differences)

Impact of Sandia materials compatibility work

- Multiple proposals, publications and presentations at conferences
- Collaborations with industry (material selection and testing) and University partnerships
 - For polymers ExxonMobil invited presentation Feb 2022 (POC: Garrett Wu)
 - For polymers University of Wisconsin Madison (2018 onwards)
- International Supercritical Carbondioxide Symposium participation

Next Steps – Recommendations (not currently funded)

- Impact of CO2 impurity level on non-metallic materials and seals
 - New and emerging materials
 - Coatings research for various seal materials
- Effect of CO2 impurities on metallic material
 - For transport applications
 - Fracture toughness testing during active CO2 exposure (with and w/o impurities)
 - Testing under realistic, in-service environments, including service/maintenance activities
 - Testing welds and connections not just base (pipeline) materials
 - Connections are always important
 - Testing flow-meters and devices that are in-line
 - Verify correct operation during long-term CO2 and impurity exposure

Thank you for your attention !!