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https://flowcharts.llnl.gov/sites/flowcharts/files/2022-04/Energy_2021_United-States_0.png

Adapted from “Some efficient solutions to recover low and medium waste heat: competitiveness of the thermoacoustic technology”, Haddad et al., 2014

https://flowcharts.llnl.gov/sites/flowcharts/files/2022-04/Energy_2021_United-States_0.png


Many technologies can take advantage of 
low-grade heat
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“Innovative technologies for energy production from low temperature heat sources: critical literature review and thermodynamic analysis”, Brogioli and La Mantia, 2021

TREC – Thermally Regenerative Electrochemical Cycle

VD – Vacuum Distillation

MD – Membrane Distillation

RED – Reverse ElectroDialysis

TEC – ThermoElectrochemical Cell

PRO – Pressure Retarded Osmosis

CRFB – Concentrated Redox Flow Battery

CuACN – Copper Acetonitrile battery

TRAB – Thermally Regenerative Ammonia Battery



Flow battery + distillation column = 
Thermally regenerative battery

4https://organics.co.uk/en/products/20/ammonia-stripping-systems
https://www.cellcube.com/casestudy/gw-microgrid-campus/
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https://organics.co.uk/en/products/20/ammonia-stripping-systems
https://www.cellcube.com/casestudy/gw-microgrid-campus/
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How the All-Aqueous Cu-TRAB 
(Cuaq-TRAB) works

“Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery”, Cross, et al., 2022
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Milestone 3: Identify performance characteristics of 

suitable membrane types



The best membrane for the Cuaq-TRAB is not 
obvious
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CEMs: 

Nafion 117

Selemion CMVN

AEMs: 

Sustainion E30-50

Selemion AMVN

Uncharged:

FilmTec BW30 



Selemion CMVN showed the highest 
peak power and energy density
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0.5 M CuBr2, 5 M NH4Br
0.5 M CuBr, 5 M NH4Br, 4 M NH3

50 ml min-1, 25 cm2

AvCarb G300A Felts 400 °C for 5 hours

“Alternative membranes cost-effectively…”, Cross, et al., Energy and Environmental Science, Submitted

10 mA cm-2, 50 ml reservoir
0.65 V cutoff



Higher applied currents resulted in higher 
power, lower energy

9

- Average power increased linearly with applied current density

- Energy density fell sharply after 50 mA cm-2

- 50 mA cm-2 showed good balance of high power and energy densities
Selemion CMVN
50 ml reservoir
0.1 V cutoff

“Alternative membranes cost-effectively…”, Cross, et al., Energy and Environmental Science, Submitted
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Milestone 3: Identify performance characteristics of 

suitable membrane types



Power density remained constant over 
200 hours 

- Numerous cycling for 200 
hours of continuous 
discharge 

- Power density was 
unchanged during cycling 
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Selemion CMVN is cost-competitive with 
commercial flow batteries
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- CMVN was the lowest cost of storage due to being an inexpensive material

- Applied current of 50 mA cm-2 for CMVN was lowest cost of storage

- Theoretical limit of the battery approaches $150 per MWh

“Alternative membranes cost-effectively…”, Cross, et al., Energy and Environmental Science, Submitted
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Milestone 4: Verify basic COMSOL model with 

experimental data obtained from lab-scale RFB test 

system



The COMSOL model with no ammonia 
crossover did not match experimental 

discharge curves
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Selemion CMVN at 50 mA cm-2

Energy Density 
(Wh L-1)

Avg. Power Density 
(mW cm-2)

Experiment 2.94 25.7

Model 3.54 30.7

Difference of ~20%!



Model-experiment agreement was achieved 
through a positive electrode potential “decay” 

caused by crossover

15

𝐸𝑒𝑞,𝑝𝑜𝑠 = 𝐸𝑝𝑜𝑠
0 − 𝐸𝑝𝑜𝑠,𝑑𝑒𝑐𝑎𝑦

0 ∗ 𝑡 −
𝑅𝑇

𝑛𝐹
ln 𝑄

Where E0
pos,decay is the decay rate and t is time

E0
pos = 0.73 V

E0
neg = -0.01 V

Selemion CMVN
50 mA cm-2, 50 mL reservoir, 0.5 M CuBr2



Trends in fitted decay rates correlated well 
with ammonia flux

16

BW30

Sustainion

Selemion AMVN

Nafion 117 Selemion CMVN

- Ammonia flux previously measured 
in diffusion experiments

- Consistent with what would be 
expected at low applied current 
density
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Bimetallic Thermally Regenerative Ammonia Battery 

(B-TRAB)



Development of a new B-TRAB
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Our 3-Step (3B-TRAB)Current 4-Step (4B-TRAB)

Modifications:
• Eliminating the ammonia addition step in the 

negative solution (3-step) 
• Keeping Cu in solution with Br- ligand 

• Two dissimilar metals Cu/Zn for higher potential 
• Cu and Zn are deposited/dissolved 



Our new 3-step B-TRAB outperforms the 
current 4-step B-TRAB

19

Performance Parameters         4B-TRAB 

Net Energy Density (Wh L
-1

) 0.89 ± 2% -0.47 ± 30% 

Coulombic Efficiency (%) 85 ± 2% 48 ± 8% 

Electrical Energy Efficiency (%) 160± 2% 75 ± 9% 

Average Discharge Power Density (mW 

cm
-2

) 16 ± 1% 12 ± 2% 

 

0.89 Wh L-1: 3B-TRAB
-0.47 Wh L-1: 4B-TRAB

10 mA cm-2, 50 mL reservoir
50 ml min-1, 25 cm2

Char: 0.1 M ZnBr2, 5 M NH4Br | 0.2 M Cu(I)Br, 5 M NH4Br, 4 M NH3

Dis: 5 M NH4Br | 0.2 M Cu(II)Br, 5 M NH4Br
Char: 0.1M ZnSO4, 1M (NH4)2SO4 | 4M NH3, 1 M (NH4)2SO4

Dis: 4M NH3, 1M (NH4)2SO44| 0.1M CuSO4, 1 M (NH4)2SO4
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Aqueous copper improves single and 
bimetallic TRAB systems
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Project extension:
- Cell architecture

- Battery materials

- Operating conditions

4B-TRAB

3B-TRAB
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• Cross et al., “Power and Energy Capacity Tradeoffs in an All-Aqueous Copper Thermally Regenerative Ammonia 
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Summary of communications
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Thank you and please contact us if you 
have any questions!
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nrc83@psu.edu

Jose Rochin
jar6997@psu.edu
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