UTSA_®

A General Drag Model for Assemblies of Non-Spherical Particles Created With Artificial Neural Networks (ANN)

Project Award Number DE-FE0031894 **PI: Zhi-Gang Feng, Ph.D. Mechanical Engineering** University of Texas at San Antonio (UTSA) **Presented by: Sergio A. Molina**

UTSA_®

Implementing Multi-Layered Neural Network to Estimate Drag Coefficients in Spherocylinder Particles

Project Award Number DE-FE0031894 **PI: Zhi-Gang Feng, Ph.D. Mechanical Engineering** University of Texas at San Antonio (UTSA) **Presented by: Sergio A. Molina**

Introduction

Neural Networks

Methodology

Designing Multi-Layered Neural Network (MLNN)

Results and Discussion

Conclusions

Motivation

- Research of hydrodynamic forces on non-spherical particles is
 of upmost importance
- Most particles are non-spherical in nature
- knowledge of forces is critical for determining particle trajectories
- Applications widely range from biological systems to industrial processes
- Examples are separation process, coal combustion, and dispersion of pollutants

Technical background

- Newton's 2nd Law of Motion for a particle:
 - $m \frac{d\vec{V}}{dt} = \sum \vec{F}$
- Particle drag determines the movement of particles in particulate flows
- Key to the modeling and understanding of all phenomena associated with the momentum, heat and mass transfer to the surroundings in all particulate processes (e.g., the process in a fluidized bed reactor)

Technical background (continued)

- The studies on the non-spherical particle drag in the literature are very limited
- Most simulation packages currently use the drag models of spherical particles

 $\varepsilon_g \geq 0.8$

 $\varepsilon_g < 0.8$

Gidaspow drag correlation

$$\beta_{gm} = \begin{cases} \frac{3}{4} C_D \frac{\rho_g \varepsilon_g \varepsilon_m |\mathbf{u}_g - \mathbf{u}_m|}{d_{pm}} \varepsilon_g^{-2.65} \\ \frac{150 \varepsilon_s (1 - \varepsilon_g) \mu_g}{\varepsilon_g d_{pm}^2} + \frac{1.75 \rho_g \varepsilon_m |\mathbf{u}_g - \mathbf{u}_m|}{d_{pm}} \end{cases}$$

$$C_D = \begin{cases} 24/\text{Re}(1+0.15\,\text{Re}^{0.687}) & \text{Re} < 1000\\ 0.44 & \text{Re} \ge 1000 \end{cases}$$

$$\mathbf{Re} = \frac{\rho_g \varepsilon_g \left| \mathbf{u}_g - \mathbf{u}_m \right| d_{pm}}{\mu_g}$$

(

UTSA. Introduction

Non-spherical particles being studied

• Ellipsoid, cone, spherocylinder, cube, etc.

An example: Spherocylinder

• A very common shape, very few studies in literature

Uniform flow over a Spherocylinder

- Three Dimensionless Parameters Inputs
 - Reynolds Number: $Re = \frac{\rho U D_e}{\mu}$
 - Aspect ratio: $\beta = \frac{a+b}{a}$
 - Incident angle: θ
- Three Coefficients Outputs
 - Drag coefficient: C_D
 - Lift coefficient: C_L
 - Torque coefficient: C_T

Numerical Simulations

• Direct Numerical Simulation (DNS) Method

Affect of the domain size to the drag

Re	Grid Resolution (<i>D</i> / <i>h</i>)	Domain Size (<i>L</i> / <i>D</i>)
0. 1 ≤ <i>Re</i> ≤ 5	10	$18 \times 18 \times 18$
$5 < Re \le 200$	20	$9 \times 9 \times 20$
200 < Re	30	$8 \times 8 \times 24$

Selection of grid resolution and grid size in the simulations

Validations

Drag Coefficient of a Sphere

Spherocylinder at $\beta = 6$ and $\theta = \pi/3$

Re=10	C _D	C _L	C _T	
Zastawny et al.	5.00	0.85	1.2	
Ouchene	6.60	1.20	1.50	
Present	6.92	1.23	1.57	

Re=300	C _D	C _L	C _T	
Zastawny et al.	1.25	0.56	0.6	
Ouchene	1.49	0.56	0.84	
Present	1.40	0.53	0.82	

General Coefficient of Drag Coefficient

- A general correlation for the drag coefficient was developed
 - Aspect Ratio: $1 \le \beta \le 6$,
 - Orientation Angle: $0^0 \le \theta \le 90^0$
 - **Reynolds Number:** $0.1 \le Re \le 300$
 - Not able to determine accurate correlations for lift and torque coefficients

Drag coefficient of a spherocylinder

$$C_{D,\theta} = C_{D,\theta=0^{\circ}} + (C_{D,\theta=0^{\circ},90^{\circ}} - C_{D,\theta=0^{\circ}})sin^{n}\theta$$

$$n = 2 - (0.72 - 0.062\beta)(1 - e^{-(0.012 - 0.0034\beta + 0.00038\beta^{2})Re}$$

$$a_{0} = 2.460 + 0.203\sqrt{Re} - 0.00613Re.$$

$$a_{1} = -3.461 - 0.324\sqrt{Re} + 0.00912Re.$$

$$a_{1} = -3.037 - 0.0487\sqrt{Re} + 0.00575Re.$$

$$a_{2} = 2.957 + 0.151\sqrt{Re} - 0.00420Re.$$

$$b_{2} = 2.872 + 0.0605\sqrt{Re} - 0.00388Re.$$

$$a_{3} = -1.084 - 0.0252\sqrt{Re} + 0.000699Re.$$

$$b_{3} = -1.070 - 0.0106\sqrt{Re} + 0.000641Re.$$
April 28, 2023 | 10

Results of General Drag Correlation*

Comparisons of Correlations (Drag coefficient at $\theta = 0^o$ and 90^0 for $\beta = 4$)

Drag coefficients for a spherocylinder in terms of (θ , β , *Re*)

*Feng et al., "A General and Accurate Correlation for the Drag on Spherocylinders", to be submitted to IJMF, 2023.

Limitations of Correlation Methods

- Mainly limited to two variables, very difficult to extend to three variables
- Very difficult to accurately correlate complex non-linear relationship
- Very sensitive to outliers, leading to skewed inaccurate results
- Overfitting issue, may not perform well when applied to new data
- Cannot account for all variables

Problem Statement

• The process of determining accurate coefficient of drag, lift, and torque estimates for non-spherical particles is often time-consuming requiring specialized skill-sets and expensive software

Objective Statement

- To develop an efficient Multi-Layered Neural Network (MLNN) that accurately predicts the coefficient of drag, lift, and torque for Spherocylinder particles within Reynolds Numbers ranging from 0.1 – 300, Aspect Ratios from 1 – 6, and Incident Angles ranging from 0° – 90°
- Specifically, to produce a regression neural network model, that may be loaded into Python, and enable users to input various Reynolds Numbers, Aspect Ratios, and Incident Angles within the constraints

Growth in Artificial Intelligence

- Artificial Intelligence (AI) is a branch of computer science that focuses on simulation of intelligent behavior within computers
- The field of has experienced a tremendous surge in growth
 - -Caused by an increase in computational power and increased data availability
 - -Global AI market size is expected to reach \$309.6 billion by 2026 with a CAGR of 39.7% from 2021 to 2026
- The amount of data created worldwide is projected to increase from 64.2 zettabytes in 2020 to 181 zettabytes in 2025

86.9 USD Billion

Deep Learning Architecture

• Deep Learning and Machine Learning are subfields of AI

Neural Networks

- Structure of a simple neural network:
 - -Input layer

UTSA

- -Intermediate layers (hidden)
- -Output layer
- Neural networks serve either classification or regression applications

Artificial Neural Networks

 Neural networks digitally resemble neural activity of the human brain via activation functions

Neural Networks

- Goal is to develop a multi-layered network that can be trained and tested to recognize unique patterns
- Examples of common neural networks applications
 - -Convolutional Neural Networks (CNN) for facial recognition
 - Multi-Layered Neural Networks (MLNN) for estimating real estate property appraisals via non-linear regression
 - Long-Short Term Memory (LSTM) for future stock price prediction

Approach

- Collect data from team members via DNS study
- Leverage statistical tools for analyzing dataset
- Determine if data preprocessing is necessary
- Split the data into training, testing, and validation sets
- Train the proposed neural network
- Validate the proposed neural network

Collect Data

 The team provided +1200 data points generated via Direct Numerical Simulations (DNS)

Methodology

- -The simulation was setup with a spherocylinder particle within a continuous flow
- Input features (discretized)
 - **-Aspect Ratio**, *β*: [1.0 6.0]
 - -Reynolds Number, *Re*: [0.1 300]
 - -Angle of Incident, θ : $[0^{\circ} 90^{\circ}]$
- Output features
 - -Coefficient of drag, lift, and torque

Distributions in Data

UTSA

• The output label data is right-skewed, exponentially distributed

Methodology

- Skewed distributions lead to model learning bias due to overrepresentation
- The range of values is large which can also result learning bias towards larger values
 - -Coefficient of Drag, C_D : [0 400]
 - -Coefficient of Lift, C_L : [0-60]
 - -Coefficient of Torque, C_T : [0-6]

UTSA. Designing Multi-Layered Neural Network (MLNN)

20

Data Preprocessing

- Data transformation via Box-Cox transformation
- Minimizes cases of overrepresentation

$$- x_{trans} = \begin{cases} \frac{x^{\lambda}}{\lambda}, \ \lambda \neq 0\\ \ln(x+1), \ \lambda = 0 \end{cases}$$
$$- y_{trans} = \begin{cases} \frac{y^{\lambda}}{\lambda}, \ \lambda \neq 0\\ \ln(y+1), \ \lambda = 0 \end{cases}$$

April 28, 2023 21

Split Dataset

- Training a neural network requires splitting the dataset
 - Common split ratios are randomly shuffled to 80%, 20% for training and testing, respectively

Designing Multi-Layered Neural Network (MLNN)

- To avoid underfitting or overfitting, attention that sufficient data representation is present within the training and test splits
- K-fold Cross Validation leveraged to avoid issues with overfitting
 - Common values for k range from 3 to 10
 - K set to 5 provided 75% of data for training and 25% for testing
 - Select the best performing k-fold

KFold

:V iteration

Ideal Good Fit

Overfitting

Establishing Baseline Single Layer Neural Network (SLNN)

• Nodes – 5

UTSA

- Epoch 1000
- Cost Function Mean Squared Logarithmic Error
- Activation Function (hidden layers) ReLU
- Batch Size 255
- K-Folds 5

Table 1. Baseline SLNN Performance	Results on	Observed Data
------------------------------------	-------------------	----------------------

Learning Rate	Batch Size	Layers	Train Time	RMSE	R² Cd	R² Cf	R² Cm
0.0001	225	1	5m 15s	26.55	0.63	0.59	0.61

Table 2. Baseline SLNN Performance Results on Unobserved Data

Learning	Batch	Layers	Train	RMSE	R² U.D.	R ² U.D.	R² U.D.
Rate	Size		Time	U.D.	Cd	Cf	Cm
0.0001	225	1	5m 15s	6.51	0.92	0.82	0.54

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 3)	12
dense_1 (Dense)	(None, 5)	20
dense_2 (Dense)	(None, 3)	18

Total params: 50 Trainable params: 50 Non-trainable params: 0

Design of Experiments (DOE)

• Scope of DOE

UTSA

- Determine the critical hyper parameter "knobs"
- 3 factors with 3 levels
- Learning rate is among the most influential hyper parameters for the model's RMSE
- Lower Batch sizes tend to add regularization during training via introduction of variation
 - May prevent the model from overfitting to the training data during the optimization process

Hyper Parameters	Values
	0.00005
Learning Rate	0.0001
	0.001
	1
Layers	5
	10
	32
Batch Size	225
	512

UTSA Designing Multi-Layered Neural Network (MLNN)

Model: "sequential_60"

Layer (type)	Output	Shape	Param #
	(No		42
dense_420 (Dense)	(None,	3)	12
dense_421 (Dense)	(None,	50)	200
dense_422 (Dense)	(None,	150)	7650
dense_423 (Dense)	(None,	350)	52850
dense_424 (Dense)	(None,	500)	175500
dense_425 (Dense)	(None,	350)	175350
dense_426 (Dense)	(None,	50)	17550
dense_427 (Dense)	(None,	3)	153

Total params: 429,265 Trainable params: 429,265 Non-trainable params: 0

Best MLNN from DOE

- Nodes 5
- Learning Rate 0.001
- Batch Size 32
- Epoch 1000
- Cost Function Mean Squared Logarithmic Error
- Activation Function (hidden layers) ReLU

Table 5. MLNN Best Performance Results on Observed Data

Learning Rate	Batch Size	Layers	Train Time	RMSE	R ² Cd	R ² Cf	R ² Cm
0.001	32	5	12m 57s	5.5	0.98	0.98	0.98

Table 6. MLNN Best Performance Results on Unobserved Data

Learning Rate	Batch Size	Layers	RMSE UD	R ² UD Cd	R ² UD Cf	R ² UD Cm
0.001	32	5	2.1	0.99	0.88	0.94

UTSA Designing Multi-Layered Neural Network (MLNN)

Final MLNN

- Nodes 75
- Learning Rate 0.001
- Batch Size 32
- Epoch 1000
- Cost Function Mean Squared Logarithmic Error
- Activation Function (hidden layers) ReLU

Table 7. MLNN Best Performance Results on Observed Data

Learning Rate	Batch Size	Layers	Train Time	RMSE	R² Cd	R² Cf	R² Cm
0.0001	225	3	15m 15s	0.69	0.999	0.999	0.999

Table 8. MLNN Best Performance Results on Unobserved Data

Learning Rate	Batch Size	Layers	Train Time	RMSE U.D.	R ² U.D. Cd	R ² U.D. Cf	R ² U.D. Cm
0.0001	225	3	15m 15s	0.999	0.999	0.999	0.999

Model: "sequential_375"

Layer <mark>(</mark> type)	Output Shape	Param #
dense_2625 (Dense)	(None, 3)	12
dense_2626 (Dense)	(None, 75)	300
dense_2627 (Dense)	(None, 75)	5700
dense_2628 (Dense)	(None, 75)	5700
dense_2629 (Dense)	(None, 75)	5700
dense_2630 (Dense)	(None, 75)	5700
dense_2631 (Dense)	(None, 3)	228
Total params: 23,340 Trainable params: 23,340 Non-trainable params: 0		

Final MLNN Model Performance

Baseline SLNN and Final MLNN Comparisons

- Tuning hyper parameters via DOE significantly reduced the percent relative error
- Percent relative error significantly reduced from 120% to 15%

UTSA MLNN Comparisons to Mathematical Correlations

MLNN Comparison with Sanjeevi et al. Drag Correlation

- Aspect Ratio of 4.0 is referenced as in literature
- MLNN achieved a correlation coefficient of 99.6%
- MLNN coefficient of drag estimates fit the correlation well

MLNN Comparison with General Drag Correlation

UTSA

 Case 1 values selected at random with aspect ratio of 1.6, incident angle of 34.4°

MLNN Comparisons to Mathematical Correlations

- The values for Reynolds Number vary from 0.1 1.6
- MLNN achieved a Case 1 correlation coefficient of 99.3%
- MLNN coefficient of drag estimates fit the correlation well

MLNN Comparison with General Drag Correlation

- 1000 random cases for aspect ratio, incident angle, and Reynolds number
- MLNN achieved a correlation coefficient of 99.9%
- MLNN coefficient of drag estimates fit the correlation extremely well

MLNN Comparison with Sanjeevi et al. Lift Correlation

Summary

- A wide-range of applications from describing separation processes to cellular biology benefit from this research
- A general correlation for the drag coefficient for a Spherocylinder was developed using traditional numerical approaches
- A MLNN was developed for estimating the coefficients of drag, lift, and torque of Spherocylinders using modern neural network regression methods
- Future improvements to the model's performance, shape selection, or input feature constraints are strongly encouraged

Current and Future Work

- From a single Spherocylinder particle to an assembly of particles
 - Solid fractions
 - Particle configurations, etc.
- Develop neural network for other non-spherical particles
 - Ellipsoid, short-cylinders, etc.

Contributors to this project

- Professor: Zhi-Gang Feng, Ph.D. <u>Zhigang.Feng@utsa.edu</u>
- Graduate students: Joshua Corner, Daniel Hinojosa, Jack Smith, and Sergio A. Molina <u>Sergio.Molina@utsa.edu</u>
- Undergraduate student: Andres Leon Islas, Mahnoor Bokhari, James Moseley, and Joshua Beltran
- UTSA Multiphase Flow Simulation Laboratory

Acknowledgements

• Special thanks to the U.S. DOE for sponsoring this research!

Thank you for your time and attention!

