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U'Im Introduction

. . 40
Motivation

« Research of hydrodynamic forces on non-spherical particles is ~ °
of upmost importance 401

M)'

/ =0

: i : 50720 0 7
» Most particles are non-spherical in nature 2

» knowledge of forces is critical for determining particle
trajectories

 Applications widely range from biological systems to industrial
processes

Coal Combustion Q%

« Examples are separation process, coal combustion, and
dispersion of pollutants

Dispersion of Pollutants

 ——

Separation Process (cyclone) ‘
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UTM Introduction

Technical background
« Newton'’s 2nd Law of Motion for a particle:

av

"My =2

Tl

« Particle drag determines the movement of particles in particulate
flows

« Key to the modeling and understanding of all phenomena associated
with the momentum, heat and mass transfer to the surroundings in all
particulate processes (e.g., the process in a fluidized bed reactor)
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U'Im Introduction

Technical background (continued)

* The studies on the non-spherical particle drag in the literature are
very limited

» Most simulation packages currently use the drag models of spherical

particles
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Um Introduction

Non-spherical particles being studied

« Ellipsoid, cone, spherocylinder, cube, etc.

An example: Spherocylinder

« Avery common shape, very few studies in literature

Uniform flow over a Spherocylinder

 Three Dimensionless Parameters - Inputs
pUDe

— Reynolds Number: Re = “

— Aspect ratio: f = a%b

— Incident angle: 6

» Three Coefficients - Outputs
— Drag coefficient: Cp
— Lift coefficient: C;

— Torque coefficient: Cr

ceEes

2=

Uniform flow




UTM Introduction

Numerical Simulations
e Direct Numerical Simulation (DNS) Method

Normalized Drag Coefficient, Cp

b
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Affect of the domain size to the drag

25

Grid Resolution (D /h) Domain Size (L/D)

10 18 x 18 x 18
5 < Re <200 20 9%x9x 20
200 < Re 30 8 X 8 X% 24

Selection of grid resolution and grid size in the
simulations
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Um Introduction %

Validations

Drag Coefficient of a Sphere Spherocylinder at § =6 and 8 = /3
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UI'SA Introduction

General Coefficient of Drag Coefficient

« A general correlation for the drag coefficient was developed
— Aspect Ratio: 1 < f < 6,
— Orientation Angle: 0° < 9 <90°
— Reynolds Number: 0.1 < Re < 300

— Not able to determine accurate correlations for lift and torque
coefficients

Drag coefficient of a spherocylinder

—_ - i}
Cpo = Cpp=oc + (CD,9=0°,90° - CD,9=0°)3”1 6

— e — by = 2.107 + 0.00357+/Re — 0.00304Re.
R =2 - (0.72 — 0.0625)(1 — e~O01Z-000345+0000356% ke ag = 2.460 + 0.203Re — 0.00613Re. 0 + VRe e
a; = —3.461 — 0.324+/Re + 0.00912Re. b, = —3.037 — 0.0487vRe + 0.00575Re.
Cpo=0c = (g + a1B%° + af + azf™° + 0.1542)Cp
a, = 2.957 + 0.151y/Re — 0.00420Re. b, = 2.872 + 0.0605\Re — 0.00388Re.
Cpp=ope = (by + b1B%° + by + b3 + 0.158%)C)y;
as = —1.084 — 0.0252vRe + 0.000699Re. by = —1.070 — 0.0106\Re + 0.000641Re.
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UTSA

Results of General Drag Correlation*

Comparisons of Correlations Drag coefficients for a spherocylinder in
(Drag coefficient at 8 = 0° and 90° for g = 4) terms of (6, B, Re)
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*Feng et al., “A General and Accurate Correlation for the Drag on Spherocylinders”, to be submitted to IIJMF, 2023.



U'Im Introduction

Limitations of Correlation Methods

« Mainly limited to two variables, very difficult to extend to three
variables

 Very difficult to accurately correlate complex non-linear relationship
 Very sensitive to outliers, leading to skewed inaccurate results

 Overfitting issue, may not perform well when applied to new data

 Cannot account for all variables
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U'Im Introduction t

Problem Statement

» The process of determining accurate coefficient of drag, lift, and torque estimates for non-spherical
particles is often time-consuming requiring specialized skill-sets and expensive software

Objective Statement

» To develop an efficient Multi-Layered Neural Network (MLNN) that accurately predicts the coefficient
of drag, lift, and torque for Spherocylinder particles within Reynolds Numbers ranging from 0.1 — 300,
Aspect Ratios from 1 — 6, and Incident Angles ranging from 0° — 90°

 Specifically, to produce a regression neural network model, that may be loaded into Python, and
enable users to input various Reynolds Numbers, Aspect Ratios, and Incident Angles within the
constraints
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Neural Networks

UTSA

Growth in Artificial Intelligence

« Artificial Intelligence (Al) is a branch of computer science that
focuses on simulation of intelligent behavior within computers

* The field of has experienced a tremendous surge in growth

—Caused by an increase in computational power and increased
data availability

—Global Al market size is expected to reach $309.6 billion by
2026 with a CAGR of 39.7% from 2021 to 2026

 The amount of data created worldwide is projected to increase
from 64.2 zettabytes in 2020 to 181 zettabytes in 2025

Several Al vendors are

o)
36.2% rorecast period
expanding their reach

and exploring ] U The growth of this mar ket can
opportunities in Asia be attributed to the rapid surge
Pacific, due to the rapid Q¢ of cybersecurity incidents and
digital transformation of ransomware attacks across the
multiple countries in the globe during the COVID-19
region. pandemic.

9] The increasing need for new use
ﬂ/ﬂ\ﬁﬂ cases for businesses, such as
decision support, interactive
games, and real-time retail
recommendation engines, is
expected to drive the market
growth

2=

The global Al market is projected to account for USD 407.0
billion by 2027 growing at a CAGR of 36.2% during the

The growing demand to
E@ access historical datasets to

predict trends is expected to

drive the Al market growth

North America is expected to
account for the largest

?/ market share during the
forecast period. The region is
one of the leaders in
technological advancements
and is home to major Al
providers.
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Um Neural Networks

Deep Learning Architecture

» Deep Learning and Machine Learning are subfields of Al

« Structure of a simple neural network:
—Input layer
—Intermediate layers (hidden)
—Output layer

* Neural networks serve either classification or regression

applications

Artificial intelligence

Machine learning

Deep learning

/ neuron

b
X/
4

RN
CSCL 7S AR IIR G "
.'4"7 RN I %‘ v
) ,’“:' ,:” O
PR XN, — DR, — )8
-~ \ 7" aN W\ ~Z &
BRI R De
°_ - PRAARCQRN v =
’A‘\\\ oo _f;‘l.’.\i\' o 7 :
N2
=gy

Output
(prediction)

|
Input
(features)

Hidden Layers
lots of layers ~ “deep learning”
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Neural Networks

UTSA

Artificial Neural Networks

* Neural networks digitally resemble neural activity of the
human brain via activation functions

» Goal is to develop a multi-layered network that can be
trained and tested to recognize unique patterns

« Examples of common neural networks applications

—Convolutional Neural Networks (CNN) for facial
recognition

—Multi-Layered Neural Networks (MLNN) for estimating

real estate property appraisals via non-linear
regression

—Long-Short Term Memory (LSTM) for future stock
price prediction

Sigmoid
o(z) =

1
14e—7*

tanh
tanh(z)

Activation Output
ion

Functio
Sum —
y

RelLU
max(0, x)

combinations of edges object models
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U'Im Methodology t

Approach
 Collect data from team members via DNS study

 Leverage statistical tools for analyzing dataset

DATA

COLLECT DATA ==  ANALYZE DATA PREPROCESSING

» Determine if data preprocessing is necessary

 Split the data into training, testing, and validation sets

SPLIT DATASET N TRAIN NEURAL ; VALIDATE NEURAL

NETWORK NETWORK

* Train the proposed neural network

» Validate the proposed neural network

April 28, 2023 | 17



Um Methodology

Collect Data

* The team provided +1200 data points generated via
Direct Numerical Simulations (DNS)

—The simulation was setup with a spherocylinder

particle within a continuous flow

 Input features (discretized)
—Aspect Ratio, f: [1.0 — 6.0]
—Reynolds Number, Re: [0.1 — 300]

1 2 3 4 5 6 6o 02 o4 06 08 10 12 14 16 o 50 100 150 200 2
aspect ratio theta (radians) Re
.
. o o 0
—ANgie or inciaen — =-] = oE =
L) - 700
w00 400

e Output features

—Coefficient of drag, lift, and torque
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U'Im Methodology

Distributions in Data
« The output label data is right-skewed, exponentially distributed

« Skewed distributions lead to model learning bias due to over-
representation

* The range of values is large which can also result learning bias
towards larger values

—Coefficient of Drag, Cp: [0 — 400]
—Coefficient of Lift, C;: [0 — 60]
—Coefficient of Torque, Cy: [0 — 6]

700 +

600

500 4

€ 400
]

300

200 4

100 ~

50

100

T
150

T
200
Cd

T T T T
250 300 350 400
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Um Designing Multi-Layered Neural Network (MLNN) %

Data Preprocessing - Ac025  mm aspectrato

BN theta (radians)

B Re

 Data transformation via Box-Cox transformation
« Minimizes cases of overrepresentation

( A
X = B 3spect ratio
_ B —, /1 + 0 300 4=0.005 BN theta (radians) ]
Xtrans o < /1 == > > o:ercent Rez;gve Error (0%? - -
In(x+1), 1=0
( A
—, A+ 0
y trans 500 =05 B aspect ratio
ln + 1 /1 — 0 BN theta (radians)
\ (y ) ’ 0.0 02 0.4 06 08 10 400 e

Percent Relative Error (%)

300

- Asetto 0.25

Count

200

100

1 2 3 4 5 6

Percent Relative Error (%)
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Um Designing Multi-Layered Neural Network (MLNN) t

Split Dataset

* Training a neural network requires splitting the dataset . :
— Common split ratios are randomly shuffled to 80%, 20% for . /

training and testing, respectively

Underfitting Ideal Good Fit Overfitting
 To avoid underfitting or overfitting, attention that sufficient data
representation is present within the training and test splits
KFold _
« K-fold Cross Validation leveraged to avoid issues with overfitting o — et
— Common values for k range from 3 to 10 5 .

— K set to 5 provided 75% of data for training and 25% for

testing
group [ | [ [
— Select the best performing k-fold 0 20 40 s 8 100

Sample index
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UTSA

Establishing Baseline Single Layer Neural Network (SLNN)
* Nodes -5

* Epoch — 1000

» Cost Function —Mean Squared Logarithmic Error
« Activation Function (hidden layers) — ReLU
 Batch Size — 255

« K-Folds - 5

Table 1. Baseline SLNN Performance Results on Observed Data

Learning Batch Train
Rate Size Layers Time RMSE R2Cd R2 Cf R2Cm
0.0001 225 1 5m 15s 26.55 0.63 0.59 0.61

Table 2. Baseline SLNN Performance Results on Unobserved Data

Learning Batch Train RMSE R2U.D. | R2U.D. | R?U.D.
Rate Size Layers Time U.D. Cd Cf Cm
0.0001 225 1 5m 15s 6.51 0.92 0.82 0.54

Designing Multi-Layered Neural Network (MLNN)

Count

Model: "sequential”

Layer (type)

Output Shape Param #
dense_1 (Dense) (Mone, 5) 28
dense_2 (Dense) (Mone, 3) 18

Total params: 5@
Trainable params: 58
Mon-trainable params: @

Percent Relative Error of Unobserved Data

Cd

30 <
Cm

25~
20~
15 A

10 A

0 20 40 60 80 100 120
Percent Relative Error (%)

April 28, 2023
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Ullm Designing Multi-Layered Neural Network (MLNN) t

Design of Experiments (DOE)
 Scope of DOE P 000
— Determine the critical hyper parameter “knobs” =
— 3 factors with 3 levels e 0
512

 Learning rate is among the most influential hyper parameters
for the model's RMSE

Main Effects Plot for RMSE

Data Means

« Lower Batch sizes tend to add regularization during training
via introduction of variation
- May prevent the model from overfitting to the training data i N A —
during the optimization process .
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UTSA

Designing Multi-Layered Neural Network (MLNN)

Model: "sequential_60"

Best MLNN from DOE ] T .
dense_420 (Dense) (None, 3) 12

o NOdeS - 5 dense_421 (Dense) (None, 58) 200

. dense_422 (Dense) (None, 150) 7650

y Learnlng Rate — 0'001 dense_423 (Dense) (None, 350) 52850

° BatCh Slze . 32 dense_424 (Dense) (None, 5ee) 175500
dense_425 (Dense) (None, 35@) 175350

) EpOCh — 1000 dense_426 (Dense) (None, 50) 17550
dense_427 (Dense) (None, 3) 153

Cost Function —Mean Squared Logarithmic Error

Total params: 429,265
Trainable params: 429,265
Non-trainable params: @

« Activation Function (hidden layers) — ReLU

Table 5. MLNN Best Performance Results on Observed Data

Learning
Rate Batch Size Layers Train Time RMSE R2 Cd R2 Cf R2Cm
0.001 32 5 12m 57s 5.5 0.98 0.98 0.98
Table 6. MLNN Best Performance Results on Unobserved Data
Learning
Rate Batch Size Layers RMSE UD R2UD Cd R2 UD Cf RZUD Cm
0.001 32 5 2.1 0.99 0.88 0.94
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UTM Designing Multi-Layered Neural Network (MLNN)

Model: "seguential 375"

. Layer (type) Output Shape Param #
Final MLNN

dense_2625 (Dense) (Mene, 3) 12
) NOdES —_ 75 dense_ 2626 (Dense) (Mone, 75) 380
- Learing Rate — 0.001 i -
+ Batch Size — 32 S o
¢ EpOCh — 1000 dense:2631 (Dense) (None: 3) 228
« Cost Function —Mean Squared Logarithmic Error otal parans: 23,40

Trainable params: 23,348
Men-trainable params: @

« Activation Function (hidden layers) — ReLU
Model Loss
0.025 - — Train
Validation
Table 7. MLNN Best Performance Results on Observed Data 0.020 1
Learning Batch Train 0.015 A
Rate Size Layers Time RMSE R2Cd R2 Cf R2Cm @
0.0001 225 3 15m 15s | 0.69 0.999 | 0.999 | 0.999 = a0
0.005 1
Table 8. MLNN Best Performance Results on Unobserved Data L
Learning Batch Train RMSE R*U.D. | R2U.D. | R?U.D. 0.000 1 ) i
Rate Size Layers Time U.D. Cd Cf Cm 0 200 400 600 800 1000
0.0001 225 3 15m 15s 0.999 0.999 0.999 0.999 Epoch
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Results and Discussion

Final MLNN Model Performance

Cd Model Linearity Cf Model Linearity

Cm Model Linearity
400 50
350
40
300 o/
& 250 A A
3 530 3
B 20 3 3
o o =
B 150 B B
[=% o o
100
10
50
o o
0 50 100 150 200 250 300 350 400 o 10 0 30 40 50 0 1 2 3 4 5
Actual Label Actual Label Actual Label
Cd Model Linearity on Unobserved Data Cf Model Linearity on Unobserved Data Cm Model Linearity on Unobserved Data
160 e? .
17.5
140
15.0 ¢
120 ®
o T 125 Y
£ 100 2 A
k=1 = 10.0 = .
H 80 &z =
e e g
- B 7 B
[= [= o
0 30 1
20 25
0 0.0
o 20 40 &0 8O 100 120 140 160 00 25 50 75 10.0 12.5 15.0 17.5 0 1 2 3 4
Actual Label Actual Label

Actual Label

April 28,2023 | 26



UTM Results and Discussion %

Baseline SLNN and Final MLNN Comparisons

* Tuning hyper parameters via DOE significantly reduced the percent relative error
 Percent relative error significantly reduced from 120% to 15%

Percent Relative Error of Unobserved Data Percent Relative Error of Unobserved Data

Bl Ccd
= cf
B Cm

25 4

20+

Count

15

10

0 20 a0 60 80 100 120 0.0 2.5 5.0 7.5 10.0 12.5
Percent Relative Error (%) Percent Relative Error (%)

15.0
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UTSA

MLNN Comparisons to Mathematical Correlations

MLNN Comparison with Sanjeevi et al. Drag Correlation

» Aspect Ratio of 4.0 is referenced as In literature

* MLNN achieved a correlation coefficient of 99.6%

« MLNN coefficient of drag estimates fit the correlation well

Co

103

10?

10%E

10°%

TITIX ! —
® 6= 0°DNS
0= 0° Present
6= 0° Sanjeevi et al.
B 6=90° DNS
— 8=90°, Present
—-= @=90° Sanjeevi et al.

107 4

107 1

Comparison of DNN and Drag Coefficient Model at B = 4

-== B=0°, Sanjeevi et al.

=== B=90° Sanjeevi et al.

® ©6=0° DNN
~ 8=90°, DNN

107!

10° 10t 107

2=
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Ullm MLNN Comparisons to Mathematical Correlations t

MLNN Comparison with General Drag Correlation

» Case 1 values selected at random with aspect ratio of 1.6, incident
angle of 34.4°

Random Case 1

® DNN Prediction

350 1 = Dr. Feng Correlation

* The values for Reynolds Number vary from 0.1 — 1.6

300 A

250 1

* MLNN achieved a Case 1 correlation coefficient of 99.3%

3 200 4
150 4
« MLNN coefficient of drag estimates fit the correlation well

100 4

50 4

0.2 0.4 0.6 0.8 1.0 1.2 1.4

April 28, 2023 | 29



UTSA

MLNN Comparisons to Mathematical Correlations

MLNN Comparison with General Drag Correlation
» 1000 random cases for aspect ratio, incident angle, and Reynolds

number

* MLNN achieved a correlation coefficient of 99.9%

* MLNN coefficient of drag estimates fit the correlation extremely

well

80
70

60

cd

20

10

Estimate Accuracy Plot for 1000 Random Cases

] ® MLNN Prediction
X Dr. Feng Correlation
L
X
L] o *
[
o L] L &
L]
L] ] L]
: [ o® n I. I i I: I L]
T T T T T T
o 200 400 600 800 1000

Linearity Plot of 1000 Random Cases

2=

4 = MLNN Prediction

17.5
@ Dr. Feng Correlation
15.0
12.5
£ 10.0
=
S

0 2 4 5] 8 10 12 14
Percent Relative Error (%)

Percent Relative Error of Observed Data

T
16

0] 2 4 6 8 10 12
Percent Relative Error (%)
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MLNN Comparisons to Mathematical Correlations

MLNN Comparison with Sanjeevi et al. Lift Correlation

Correlation Plot at Re = 0.1 and Re = 1.0
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U'Im Conclusions t

Summary

» A wide-range of applications from describing separation processes to cellular
biology benefit from this research

» A general correlation for the drag coefficient for a Spherocylinder was developed
using traditional numerical approaches

« A MLNN was developed for estimating the coefficients of drag, lift, and torque of
Spherocylinders using modern neural network regression methods

» Future improvements to the model’s performance, shape selection, or input
feature constraints are strongly encouraged
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Um Conclusions
®

Current and Future Work

« From a single Spherocylinder particle to an assembly of particles
— Solid fractions
— Particle configurations, etc.

» Develop neural network for other non-spherical particles R
— Ellipsoid, short-cylinders, etc. L ¥
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