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Introduction

Motivation

• Research of hydrodynamic forces on non-spherical particles is 
of upmost importance

• Most particles are non-spherical in nature

• knowledge of forces is critical for determining particle 
trajectories

• Applications widely range from biological systems to industrial 
processes 

• Examples are separation process, coal combustion, and 
dispersion of pollutants
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Introduction

Technical background

• Newton’s 2nd Law of Motion for a particle:

− 𝑚
𝑑𝑽

𝑑𝑡
= ∑𝑭

• Particle drag determines the movement of particles in particulate 
flows

• Key to the modeling and understanding of all phenomena associated 
with the momentum, heat and mass transfer to the surroundings in all 
particulate processes (e.g., the process in a fluidized bed reactor)
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Introduction

Technical background (continued)

• The studies on the non-spherical particle drag in the literature are 
very limited

• Most simulation packages currently use the drag models of spherical 
particles
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Introduction

Non-spherical particles being studied

• Ellipsoid, cone, spherocylinder, cube, etc.

An example: Spherocylinder 

• A very common shape, very few studies in literature

Uniform flow over a Spherocylinder

• Three Dimensionless Parameters - Inputs

− Reynolds Number: 𝑅𝑒 =
𝜌𝑈𝐷𝑒

𝜇

− Aspect ratio: 𝛽 =
𝑎+𝑏

𝑎

− Incident angle: 𝜃

• Three Coefficients - Outputs

− Drag coefficient: 𝐶𝐷

− Lift coefficient: 𝐶𝐿

− Torque coefficient: 𝐶𝑇



Introduction

Numerical Simulations

• Direct Numerical Simulation (DNS) Method

Re Grid Resolution (𝐷/ℎ) Domain Size (𝐿/𝐷)

0.1 ≤ 𝑅𝑒 ≤ 5 10 18 × 18 × 18

5 < 𝑅𝑒 ≤ 200 20 9 × 9 × 20

200 < 𝑅𝑒 30 8 × 8 × 24

Affect of the domain size to the drag
Selection of grid resolution and grid size in the 

simulations
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Introduction

Validations

Drag Coefficient of a Sphere

Re=10 𝑪𝑫 𝑪𝑳 𝑪𝑻

Zastawny et al. 5.00 0.85 1.2

Ouchene 6.60 1.20 1.50

Present 6.92 1.23 1.57

Spherocylinder at 𝜷 = 𝟔 and 𝜽 = 𝝅/𝟑

Re=300 𝑪𝑫 𝑪𝑳 𝑪𝑻

Zastawny et al. 1.25 0.56 0.6

Ouchene 1.49 0.56 0.84

Present 1.40 0.53 0.82
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Introduction

General Coefficient of Drag Coefficient 

• A general correlation for the drag coefficient was developed

– Aspect Ratio: 1 ≤ 𝛽 ≤ 6, 

– Orientation Angle: 00 ≤ 𝜃 ≤ 900

– Reynolds Number: 0.1 ≤ 𝑅𝑒 ≤ 300

– Not able to determine accurate correlations for lift and torque 

coefficients

Drag coefficient of a spherocylinder 
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Results of General Drag Correlation* 

Comparisons of Correlations

(Drag coefficient at 𝜽 = 𝟎𝒐 and 𝟗𝟎𝟎 for 𝜷 = 𝟒)

Drag coefficients for a spherocylinder in 

terms of (𝜃, 𝛽, Re)

*Feng et al., “A General and Accurate Correlation for the Drag on Spherocylinders”, to be submitted to IJMF, 2023.



Introduction

Limitations of Correlation Methods

• Mainly limited to two variables, very difficult to extend to three 
variables

• Very difficult to accurately correlate complex non-linear relationship 

• Very sensitive to outliers, leading to skewed inaccurate results

• Overfitting issue, may not perform well when applied to new data

• Cannot account for all variables
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Introduction

Problem Statement

• The process of determining accurate coefficient of drag, lift, and torque estimates for non-spherical 
particles is often time-consuming requiring specialized skill-sets and expensive software

Objective Statement

• To develop an efficient Multi-Layered Neural Network (MLNN) that accurately predicts the coefficient 
of drag, lift, and torque for Spherocylinder particles within Reynolds Numbers ranging from 0.1 – 300,  
Aspect Ratios from 1 – 6, and Incident Angles ranging from 0° – 90°

• Specifically, to produce a regression neural network model, that may be loaded into Python, and 
enable users to input various Reynolds Numbers, Aspect Ratios, and Incident Angles within the 
constraints
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Neural Networks

Growth in Artificial Intelligence

• Artificial Intelligence (AI) is a branch of computer science that 
focuses on simulation of intelligent behavior within computers

• The field of has experienced a tremendous surge in growth

−Caused by an increase in computational power and increased 
data availability

−Global AI market size is expected to reach $309.6 billion by 
2026 with a CAGR of 39.7% from 2021 to 2026

• The amount of data created worldwide is projected to increase 
from 64.2 zettabytes in 2020 to 181 zettabytes in 2025
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Neural Networks

Deep Learning Architecture

• Deep Learning and Machine Learning are subfields of AI

• Structure of a simple neural network:

−Input layer

−Intermediate layers (hidden)

−Output layer 

• Neural networks serve either classification or regression 
applications
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Neural Networks

Artificial Neural Networks

• Neural networks digitally resemble neural activity of the 
human brain via activation functions

• Goal is to develop a multi-layered network that can be 
trained and tested to recognize unique patterns

• Examples of common neural networks applications

−Convolutional Neural Networks (CNN) for facial 
recognition

−Multi-Layered Neural Networks (MLNN) for estimating 
real estate property appraisals via non-linear 
regression

−Long-Short Term Memory (LSTM) for future stock 
price prediction
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Methodology

Approach

• Collect data from team members via DNS study

• Leverage statistical tools for analyzing dataset

• Determine if data preprocessing is necessary

• Split the data into training, testing, and validation sets

• Train the proposed neural network

• Validate the proposed neural network
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Methodology

Collect Data

• The team provided +1200 data points generated via 
Direct Numerical Simulations (DNS)

−The simulation was setup with a spherocylinder 
particle within a continuous flow

• Input features (discretized)

−Aspect Ratio, 𝜷: [1.0 – 6.0]

−Reynolds Number, 𝑹𝑒: [0.1 – 300]

−Angle of Incident, 𝜽 : [0° – 90°]

• Output features

−Coefficient of drag, lift, and torque
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Methodology

Distributions in Data

• The output label data is right-skewed, exponentially distributed

• Skewed distributions lead to model learning bias due to over-
representation

• The range of values is large which can also result learning bias 
towards larger values

−Coefficient of Drag, 𝑪𝑫: [0 – 400]

−Coefficient of Lift, 𝑪𝑳: [0 – 60]

−Coefficient of Torque, 𝑪𝑻: [0 – 6]
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Designing Multi-Layered Neural Network (MLNN)

Data Preprocessing

• Data transformation via Box-Cox transformation

• Minimizes cases of overrepresentation

− 𝑥𝑡𝑟𝑎𝑛𝑠 = ቐ
𝑥𝜆

𝜆
, 𝜆 ≠ 0

ln 𝑥 + 1 , 𝜆 = 0

− 𝑦𝑡𝑟𝑎𝑛𝑠 = ቐ
𝑦𝜆

𝜆
, 𝜆 ≠ 0

ln 𝑦 + 1 , 𝜆 = 0

− 𝝀 set to 0.25
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Designing Multi-Layered Neural Network (MLNN)

Split Dataset

• Training a neural network requires splitting the dataset

− Common split ratios are randomly shuffled to 80%, 20% for 
training and testing, respectively

• To avoid underfitting or overfitting, attention that sufficient data 
representation is present within the training and test splits

• K-fold Cross Validation leveraged to avoid issues with overfitting

− Common values for k range from 3 to 10

− K set to 5 provided 75% of data for training and 25% for 
testing

− Select the best performing k-fold
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Designing Multi-Layered Neural Network (MLNN)

Establishing Baseline Single Layer Neural Network (SLNN)

• Nodes – 5 

• Epoch – 1000

• Cost Function –Mean Squared Logarithmic Error

• Activation Function (hidden layers) – ReLU

• Batch Size – 255

• K-Folds – 5 

Learning 
Rate

Batch 
Size Layers

Train 
Time RMSE R² Cd R² Cf R² Cm

0.0001 225 1 5m 15s 26.55 0.63 0.59 0.61

Learning 
Rate

Batch 
Size Layers

Train 
Time

RMSE 
U.D.

R² U.D. 
Cd

R² U.D. 
Cf

R² U.D. 
Cm

0.0001 225 1 5m 15s 6.51 0.92 0.82 0.54

Table 1. Baseline SLNN Performance Results on Observed Data

Table 2. Baseline SLNN Performance Results on Unobserved Data

April 28, 2023 |    22



Designing Multi-Layered Neural Network (MLNN)

Design of Experiments (DOE)

• Scope of DOE

− Determine the critical hyper parameter “knobs”

− 3 factors with 3 levels

• Learning rate is among the most influential hyper parameters 
for the model’s RMSE

• Lower Batch sizes tend to add regularization during training 
via introduction of variation 

− May prevent the model from overfitting to the training data 
during the optimization process

Hyper Parameters Values

Learning Rate

0.00005

0.0001

0.001

Layers

1

5

10

Batch Size

32

225

512

April 28, 2023 |    23



Designing Multi-Layered Neural Network (MLNN)

Best MLNN from DOE

• Nodes – 5 

• Learning Rate – 0.001

• Batch Size – 32 

• Epoch – 1000

• Cost Function –Mean Squared Logarithmic Error

• Activation Function (hidden layers) – ReLU

Learning 
Rate Batch Size Layers Train Time RMSE R² Cd R² Cf R² Cm

0.001 32 5 12m 57s 5.5 0.98 0.98 0.98

Learning 
Rate Batch Size Layers RMSE UD R² UD Cd R² UD Cf R² UD Cm

0.001 32 5 2.1 0.99 0.88 0.94

Table 6. MLNN Best Performance Results on Unobserved Data

Table 5. MLNN Best Performance Results on Observed Data
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Designing Multi-Layered Neural Network (MLNN)

Final MLNN

• Nodes – 75 

• Learning Rate – 0.001

• Batch Size – 32 

• Epoch – 1000

• Cost Function –Mean Squared Logarithmic Error

• Activation Function (hidden layers) – ReLU

Table 8. MLNN Best Performance Results on Unobserved Data

Table 7. MLNN Best Performance Results on Observed Data

Learning 
Rate

Batch 
Size Layers

Train 
Time RMSE R² Cd R² Cf R² Cm

0.0001 225 3 15m 15s 0.69 0.999 0.999 0.999

Learning 
Rate

Batch 
Size Layers

Train 
Time

RMSE 
U.D.

R² U.D. 
Cd

R² U.D. 
Cf

R² U.D. 
Cm

0.0001 225 3 15m 15s 0.999 0.999 0.999 0.999
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Results and Discussion

Final MLNN Model Performance
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Results and Discussion

Baseline SLNN and Final MLNN Comparisons

• Tuning hyper parameters via DOE significantly reduced the percent relative error

• Percent relative error significantly reduced from 120% to 15%
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MLNN Comparisons to Mathematical Correlations

MLNN Comparison with Sanjeevi et al. Drag Correlation

• Aspect Ratio of 4.0 is referenced as in literature

• MLNN achieved a correlation coefficient of 99.6%

• MLNN coefficient of drag estimates fit the correlation well 
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MLNN Comparisons to Mathematical Correlations

MLNN Comparison with General Drag Correlation

• Case 1 values selected at random with aspect ratio of 1.6, incident 
angle of 34.4°

• The values for Reynolds Number vary from 0.1 – 1.6

• MLNN achieved a Case 1 correlation coefficient of 99.3%

• MLNN coefficient of drag estimates fit the correlation well 
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MLNN Comparisons to Mathematical Correlations

MLNN Comparison with General Drag Correlation

• 1000 random cases for aspect ratio, incident angle, and Reynolds 
number

• MLNN achieved a correlation coefficient of 99.9%

• MLNN coefficient of drag estimates fit the correlation extremely 
well 
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MLNN Comparisons to Mathematical Correlations

MLNN Comparison with Sanjeevi et al. Lift Correlation
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Conclusions

Summary

• A wide-range of applications from describing separation processes to cellular 
biology benefit from this research

• A general correlation for the drag coefficient for a Spherocylinder was developed 
using traditional numerical approaches

• A MLNN was developed for estimating the coefficients of drag, lift, and torque of 
Spherocylinders using modern neural network regression methods

• Future improvements to the model’s performance, shape selection, or input 
feature constraints are strongly encouraged 
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Conclusions 

Current and Future Work

• From a single Spherocylinder particle to an assembly of particles 

− Solid fractions

− Particle configurations, etc.

• Develop neural network for other non-spherical particles

− Ellipsoid, short-cylinders, etc.
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Thank you for your time and attention!
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